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Electronic and optical properties of self-assembled InN/GaN quantum dots are investigated by use of a tight-
binding model combined with a configuration interaction calculation. Dipole and Coulomb matrix elements
are calculated from the single-particle wavefunctions which fully include the atomistic wurtzite structure of
the low-dimensional heterostructure and serve as input parameters for the calculation of optical properties.
We discuss in particular the influence of the internal electric field on the multi-exciton spectra. Dark exciton
and biexciton ground-states are found for small quantum dots.

1 Introduction

Semiconductor quantum dots (QDs) are subject of intense experimental and theoretical research. As a new

material system, group-III nitrides are of particular interest due to their wide range of emission frequencies

from amber to ultraviolet. In the following, we study self-assembled InN/GaN QDs in the wurtzite phase.

The one-particle states are calculated by means of a tight-binding (TB) model, which provides a powerful

approach to the electronic states of low-dimensional heterostructures on an atomistic level [1, 2]. For the

calculation of optical absorption and emission spectra, configuration-interaction (CI) calculations [3, 4]

are used to obtain a consistent description of correlated many-particle states. The calculation of dipole

and Coulomb matrix elements from the TB one-particle wave functions [5, 6] allows to combine these

two approaches and facilitates the investigation of optical transitions between the interacting many-particle

states of QDs with parameters obtained from a microscopic model.

2 Theory

To reproduce the characteristic properties of the bulk band structures of wurtzite InN and GaN in the

vicinity of the Γ point, we use a TB-Model with an sp3-basis |ν, α,R〉. More precisely, we use one s-

state (α = s) and three p-states (α = px, py, pz) per spin direction at each site ν inside the unit cell R.

Non-diagonal TB-matrix elements are included up to nearest neighbors. The small spin-orbit coupling

and crystal-field splitting are neglected. Therefore, by using the two center approximation of Slater and

Koster [7], we are left with nine independent matrix elements. These matrix elements are empirically deter-

mined by fitting the TB band structure to band structure calculations and available experimental data [8, 9]

so that the characteristic properties of the band structure around the Γ point are well reproduced.
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Starting from the bulk TB-parameters, the QD is modeled on an atomistic level, such that for each site

the matrix elements are set according to the occupying atoms. For the nitrogen (N) atoms at the interface

between GaN and InN we use an averaged value for the on-site matrix elements. The valence band offset

∆Ev between the two materials (InN and GaN ) is included in our model by shifting the diagonal matrix

elements of the bulk InN. We assume here a valence-band offset between the two materials of ∆Ev = 0.5
eV [10]. To model an InN QD embedded in a GaN barrier material, a cell with fixed boundary conditions

is chosen. A sufficiently large supercell is required to avoid numerical artefacts in the localized QD states

due to the cubic symmetry of the boundaries. Inside this box we consider an InN wetting layer (WL) with

a thickness of one lattice constant in z-direction of the conventional unit cell, and on top of this a lens-

shaped InN QD. As a first approximation we neglect the lattice mismatch between InN and GaN. Since

we are interested in more general aspects to bridge the gap between the single-particle properties and the

many-body problem, we neglected the strain induced displacements of the atoms. In case of, for example,

elongated pyramidal QD structures strain could be important and may affect the ordering of the single

particle states. For the chosen QD geometry, however, the more realistic inclusion of strain effects does

not change the symmetry so that the general statements should also hold if strain effects were included in

our calculation. Surface effects, stemming from the fixed boundary conditions of the finite supercell, are

avoided by the method described in Ref. [11]. The spontaneous polarization in the wurtzite crystal structure

and the strong strain-induced piezoelectric field are included according to Ref. [12].In case of InN and GaN

several different values for material parameters have been reported in the literature. These variations are

mainly caused by the fact that it is difficult to grow sufficiently large bulk crystals [13]. Nevertheless,

even with different values for the material parameters a similar qualitative behavior for the ordering of

the single-particle states can be expected. Different values for material parameters would mainly yield

an overall shift of the single-particle energy spectrum. A discussion and an overview of the influence of

different elastic and piezoelectric constants on the built-in field is given in Ref. [14]. The TB-Hamiltonian

of the whole cell corresponds to a finite but huge matrix. Therefore, the eigenstates and eigenenergies

must be determined by efficient matrix diagonalization algorithms. For this purpose we employ the folded

spectrum method (FSM) [15] combined with parpack routines.

For the calculation of optical spectra, Coulomb and dipole matrix elements between the TB single-

particle wavefunctions are required. As the atomic orbitals are not explicitly known in an empirical TB

approach, we approximate the Coulomb matrixelements by:

Vijkl =
∑
RR′

∑
αβ

ci∗
Rαcj∗

R′βck
R′βcl

RαV (R − R′) , (1)

with V (R − R′) =
e2
0

4πε0εr|R − R′| for R �= R′

and V (0) =
1

V 2
uc

∫
uc

d3r d3r′
e2
0

4πε0εr|r − r′| ≈ V0 . (2)

The ci
R,αare the expansion coefficients of the ithTB single-particle wavefunction ψi(r)=

∑
Rαci

RαφαR(r),
in terms of the atomic orbitals φαR(r) localized at the position R. In Eq. 1 the variation of the Coulomb

interaction is taken into account only on a length scale of the order of the lattice vectors but not inside one

unit cell. This is well justified due to the long ranged, slowly varying behavior of the Coulomb interaction.

For |R − R′| = 0 the evaluation of the integral in Eq. (2) can be done quasi-analytically by expansion of

the Coulomb interaction in terms of spherical harmonics [16]. The details can be found in Ref. [6].

In contrast to the Coulomb matrix elements, the short range contributions dominate the dipole matrix

elements. Therefore, it is necessary to connect the calculated TB coefficients directly to the underlying set

of atomic orbitals. A commonly used approach is the use of Slater orbitals [17]. These orbitals include

the correct symmetry properties of the underlying TB coefficients but lack the essential assumption of or-

thogonality with respect to different lattice sites, since they have been developed for isolated atoms. We
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Fig. 1 The structure of the QD is shown from atop. Isosurfaces of the electron and hole charge density, respectively,

with 20% (blue) and 80% (red) of the maximum value are depicted. The first two shells for electrons (left) and

holes (right) are shown. For the two-fold degenerate p-shell only one state is visualized, as the other one looks alike.

The C3v-symmetry of the QD geometry and the underlying wurtzite crystal is most evident for the hole states. The

corresponding energies (Ee,h
1,2,3) are measured from the valence band maximum of bulk GaN.

overcome this problem by using numerically orthogonalized Slater orbitals [6]. These orthogonalized or-

bitals fulfill all basic requirements, regarding the symmetry, locality, and orthogonality of the basis orbitals

underlying the TB formulation.

The microscopically evaluated single-particle states and Coulomb interaction matrix elements in the

configuration-interaction (CI) calculation are used to determine the multiexciton eigenstates. [3, 4] If one

considers only the bound single-particle states for the electrons and holes, the eigenvalue problem for a

given number of electrons and holes has a finite dimension. Therefore it can be solved without further

approximations and the Coulomb interaction between all the different possible configurations of carriers in

the considered bound states is fully taken into account. In order to find the eigenvalues and eigenfunctions

of the interacting problem, the many-body Hamiltonian is expressed in terms of the uncorrelated basis and

the resulting Hamiltonian matrix is diagonalized. This yields an expansion of the interacting eigenstates of

the system for a given number of electrons and holes in terms of the uncorrelated basis states. With these

states one can then calculate emission or absorption spectra between the interacting eigenstates of the QD

system using Fermi’s golden rule.

3 Results

We consider here a small lens-shaped QD with diameter d = 4.5 nm and height h = 1.6 nm. This lens-

shaped QD confines three bound electron states. These states are included in the configuration interaction

calculation, together with the first three bound hole states which are spectrally well separated from the

other hole states. The one-particle states are visualized in Fig. 1. The dominant orbital character for the

electron states stems from the single atomic s-orbitals, while for the hole states a strong intermixing of

the atomic p-orbitals is observed. Note that the p-shell for the electrons and holes are, apart from the spin

degeneracy, both two-fold degenerate. This may appear suprising since it is known that in the case of the

InGaAs system the p-shell is split if an atomistic description of the electronic states is employed [18]. In

the nitride case, however, the symmetry group of the structure is different and indeed supports an exact

degenerate p-shell [19]. We emphasize that the proper treatment of the single particle states, and therefore

all optical properties, requires a multiband treatment like k ·p, pseudopotential or a tight-binding approach

and cannot be accounted for by single-band effective-mass approaches.

With the inclusion of the internal field the electron states are shifted towards the cap of the QD, while

the hole states are constrained to a few atomic layers at the bottom. Obviously this spatial separation

of electron and hole wavefunctions leads to reduced dipole matrix elements. Besides the influence on

the oscillator strength, the additional confinement of the electrons into the cap of the QD increases the

electronic Coulomb matrix elements. The internal electric field shifts the electron single-particle states to
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Fig. 2 Emission spectra with (solid-black lines) and without (dashed-red lines) built-in field. The initial states are

ground-states for different numbers of excitons with total spin z-component Sz = 0.

lower energies, while the hole states are shifted to higher energies. Consequently, the electrostatic built-in

field leads to an overall redshift in the single particle energy-gap, that is also known from the quantum-

confined Stark effect (QCSE).

With the discussed single-particle states Coulomb and dipole matrix elements are calculated. They

enter in our CI calculation as input parameters. This leads to the multi-exciton emission spectra, depicted

in Fig. 2 for the investigated QD. The spectra are shown with and without the influence of the built-in

field for an initial filling with one up to four excitons. The quantum-confined Stark effect is clearly visible

as an overall redshift of the spectra and also manifests itself in a reduction of the oscillator strengths by

about a factor of two. For the investigated small lens-shaped InN/GaN QDs, we find vanishing exciton and

biexciton ground-state emission [5], due to the underlying C3v symmetry of the system [19]. At higher

excitation conditions strong emission from three to four exciton complexes is obtained . Furthermore, with

increasing number of electron and hole pairs a strong blueshift can be observed. This feature can already

be explained by the strong Hartree contributions that arise as the envelopes for the electrons and holes are

quite different. This strong deviation of the envelopes leads to Hartree-Fock terms that would at least partly

cancel in the case of identical envelopes. Note that the energetic shift with increasing number of excitons

is by far more pronounced in the presence of the internal fields as the stronger separation of the electron

and hole wave functions is accompanied by stronger Hartree-fields.

4 Conclusion

An empirical sp3 TB-model has been applied to the calculation of the electronic states of a self-assembled

InN/GaN QD. We have calculated the first three bound electron and hole states, localized in the region of

the dot, by numerical diagonalization of the huge TB matrix. The influence of the internal electric field on

the single particle states and energies is studied. The built-in field leads to a red shift in the single particle

energy-gap of the QD. Inside the electrostatic field, the electron states move towards the top and the hole

states move down to the bottom of the QD.

Furthermore, the multiexciton emission spectra are calculated with microscopically determined input

parameters, which fully takes into account the underlying wurtzite crystal lattice. The inclusion of the

internal electric field results in an overall redshift of the spectra and a decrease of the dipole matix elements,

due to the spatial separation of electron and hole wavefunctions. For the small lens-shaped InN/GaN QD

investigated here, we find a vanishing exciton and biexciton ground state emission.
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