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A tight-binding model for semiconductor quantum dots (QD) consisting of a small gap semiconductor 

material A embedded within a larger gap material B is used to determine the bound, localized one-particle 

QD-states. The form and symmetry properties of these states and their dependence on form, size and 

composition of the QDs are discussed. The Coulomb and dipole matrix elements between these states are 

calculated so that a many-body Hamiltonian is derived describing the elctronic properties of the QDs and 

the coupling to an applied (optical) electric field. Truncating the many-particle Hilbert space by taking in-

to account only a finite number of localized electron and hole states the many-body Hamiltonian can be 

solved exactly. The resulting excitation spectrum and optical properties are presented and discussed. The 

method is, in particular, applied to CdSe QDs embedded in ZnSe with zincblende structure, to CdSe na-

nocrystals, and to InN QDs embedded in GaN with wurtzite structure. For the latter case also the influen-

ce of an intrinsic piezoelectric field and of the special symmetry properties of the wurtzite structure are 

discussed. 

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

1 Introduction 

A semiconductor quantum dot (QD) may be realized by means of colloidal chemical synthesis or by 
means of self organized clustering during the epitaxial growth process. In the former case the crystal 
growth in the environment of (mostly organic) surfactant material stops when the surface is covered by a 
monolayer of surfactant molecules, and a nanocrystal (NC) with a diameter of a few nm is created. The 
size and shape of the NCs can be controlled by external parameters (growth time, temperature, etc.). An 
embedded QD (EQD) may occur spontaneously in quantum well structures due to monolayer fluctua-
tions in the well’s thickness or self-assembled during epitaxial growth, when a material is grown on a 
substrate to which it is not lattice matched. Due to strain island formation on top of a two-dimensional 
“wetting-layer” (WL) may be energetically favorable (Stranski–Krastanov, SK-growth). 
 In this paper we describe a microsopic tight-binding (TB) method to determine the electronic proper-
ties of EQDs and NCs. The TB parameters of the pure semiconductor materials A and B are obtained by 
fitting the TB band structure to band structure properties known from experiment or from ab-initio calcu-
lations. Then an A-QD embedded within B-material is described by using the A-TB-parameters at the 
sites of the QD and the B-TB-parameters at all other sites. The effects of spin–orbit coupling, strain and 
piezoelectric fields can be incorporated into the TB model. Then the electronic one-particle states and 
eigenenergies of the A-QD are obtained by matrix diagonalization. The Coulomb and dipole matrix ele-
ments between these states can be calculated so that a many-body Hamiltonian for the QD coupled to an 
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external field is obtained, which is studied in a configuration interaction (CI) treatment. From the CI 
approach the optical properties of the QD can be obtained. 
 Here we give a short review on this TB method and on results obtained recently for different QD sys-
tems. 

2 Theory 

2.1 TB model for bulk materials 

For the description of the bulk materials we start from an effective one-particle Hamiltonian in Wannier 
representation: 

 bulk (A,B) (A,B)| | e | | .ik

R R nm nm

R R n m k

H t Rn R m t kn km
∆

∆

∆

〉 〈 〉 〈- ¢, ,

, ¢, ,

= =¢Â Â Â  (1) 

 We restrict the band indices n m,  to the bands considered to be the most important ones for the elec-
tronic properties. This means that for the compounds CdSe and ZnSe with zincblende structure an 3

s p
c a

 
basis set is chosen, i.e. one s-orbital at the cation and three p-orbitals at the anion sites in each unit cell. 
The coupling of the basis orbitals is limited to nearest and next nearest neighbors ∆. Following Ref. [1], 
the spin–orbit component of the bulk Hamiltonian bulk

H  couples only p-orbitals at the same atom. Now 
the different TB-parameters 

R R nm
t - ¢,  are chosen so that the resulting TB bands reproduce the known val-

ues of the Kohn–Luttinger-Parameters (
1

γ , 
2

γ , 
3

γ ), the energy gap, the effective electron mass and the 
spin–orbit-splitting. Within this approach, the characteristic properties of the band structure in the region 
of the Γ -point are well reproduced. More details about the TB-model can be found in Ref. [2]. 
 To reproduce the characteristic properties of the bulk band structures of wurtzite InN and GaN in the 
vicinity of the Γ -point, we use a TB-model with one s-state and three p-states per spin direction at each 
site inside the unit cell. Non-diagonal TB-matrix elements are included up to nearest neighbors ∆. The 
small spin–orbit coupling and crystal-field splitting are neglected. Then we are left with nine independ-
ent matrix elements. These matrix elements are again empirically determined so that the characteristic 
properties of the band structure around the Γ -point are well reproduced. More details are given in 
Ref. [3]. 

2.2 TB approach for embedded quantum dots (EQDs) and nanocrystals (NCs) 

Starting from the bulk TB-parameters, the QD is modeled on an atomistic level, such that for each site 
the matrix elements are set according to the occupying atoms. For the nitrogen (N) or selen (Se) atoms at 
the interface between GaN and InN or CdSe and ZnSe, respectively, we use an averaged value for the 
on-site matrix elements. The valence band offset 

v
ED  between the two materials (InN/GaN and 

CdSe/ZnSe, respectively) is included in our model by shifting the diagonal matrix elements of the bulk 
InN and CdSe, respectively. To model an embedded (InN or CdSe) QD in a barrier material (GaN or 
ZnSe), a finite zincblende or wurtzite lattice within a box is chosen. For the chemically synthesized CdSe 
nanocrystals (NCs), which are almost spherical in shape [4], the surface is passivated by organic ligands. 
Here the TB parameters, which describe the coupling between the dot material and the ligand molecules 
are simply chosen to be zero. 
 The resulting TB-Hamiltonian of the whole supercell corresponds to a finite but large matrix. For the 
matrix elements without the inclusion of strain effects the TB-parameters 

R R nm
t - ¢,  of the bulk materials, 

determined as described in Section 2.1, are used. But in a heterostructure of two materials with different 
lattice constants, strain effects have to be included for a description of the electronic states, because the 
distance between two unit cells and the bond angles are not the same as the corresponding equilibrium 
values in the bulk. This means that the TB matrix elements 

R R nm
t - ¢,  in the EQD differ from the matrix 

elements in the bulk material, if R R- ¢ is not the equilibrium distance of the bulk crystal. These strain 
effects are taken into account according to Harrison’s 2

d
-  rule [5]. 
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 The eigenstates and eigenenergies of the TB-Hamiltonian must be determined by efficient matrix 
diagonalization algorithms. For this purpose we employ the folded spectrum method (FSM) [6] com-
bined with parpack rountines. 

2.3 Electrostatic built-in field 

An electrostatic built-in field can significantly modify both the electronic and the optical properties of 
QDs. In contrast to cubic semiconductor heterostructures, the III–V wurtzite nitrides exhibit a consider-
ably large built-in field [7]. In order to incorporate this field in the TB model for wurtzite structures, the 
electrostatic potential 

p
φ  is determined from the solution of the Poisson equation and enters as a site-

diagonal contribution 
p p
( ) ( )V eφ= -r r  to the TB Hamiltonian [8]. In the case of wurtzite structures, the 

polarisation P  has two contributions, the spontaneous polarisation spont
P  and the piezo-electric contribu-

tion piezo
P  due to strain inside the system. For the latter we use the approximation described in Ref. [9] 

and assume piezo

z
P e∼ , which is well justified for the considered QD geometry [8]. 

3 Results for self assembled zincblende CdSe/ZnSe QDs 

We consider a pyramidal QD, with base length 10b a=  (a: lattice constant of bulk ZnSe) and height 
2h b= / , on top of a one monolayer thick wetting layer (WL), grown in the (001)-direction. We have 

calculated the first five states for electrons and holes with and without including strain effects. To con-
sider strain effects in our model the knowledge of the strain tensor ε  is necessary, from which the new 
relative atomic positions 0(1 )ε

¢- ¢-
= +

R R R R
d d  can be obtained. To appoint the strain tensor outside the 

EQD, the WL is treated as a quantum well [10]. The strain profile inside the EQD is obtained by using a 
model strain profile, which shows a similar behavior as the strain profiles of Ref. [11]. 
 In Fig. 1(a) the isosurfaces of the squared electron and hole wavefunctions 2| ( )|

i
Φ r  including strain 

effects are displayed. The red (light) and blue (dark) isosurface levels are selected as 0.1 and 0.5 of the 
maximum probability density, respectively. We obtain here, that the lowest electron state 

1
e  is an s-like 

state according to its nodal structure. The next two states 
2
e  and 

3
e  are p-like states. These states are 

oriented along the [110] and the [110] direction, respectively, and splitted in energy due to the 
2v

C  sym-
metry of the system. Obviously the hole states cannot be classified as being s-like (

1
h ), p-like (

2
h  and 

3
h )  
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Fig. 1 (online colour at: www.pss-b.com) (a) Isosurfaces of the squared electron and hole wavefunctions with 

strain for the 10b a=  pyramidal QD. The light and dark surfaces correspond to 0.1 and 0.5 of the maximum prob-

ability density, respectively. (b) First five electron and hole state energies for the pyramidal CdSe QD. On the left-

hand side the results for the unstrained QD are shown while on the right-hand side the results for the strained QD are 

displayed. The zero of the energy scale is the bulk ZnSe valence-band maximum (VBM). The energies are compared 

with the conduction-band minimum (CBM) of the bulk ZnSe. 
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or d-like (
5

h ) according to their nodal structures. With and without strain the hole states underly a strong 
band mixing. Therefore the frequently used assumption of a single heavy-hole valence-band for the de-
scription of the bound hole states in a EQD even qualitatively yields incorrect results. 
 Figure 1(b) shows the comparison of the results for the strain-unaffected and strained pyramidal CdSe 
EQD. On the left-hand side of Fig. 1(b) the first five electron and hole-state energies for an unstrained 
EQD are displayed while the right-hand side shows the energies for the strained EQD. The lowest elec-
tron state is, by strain effects, shifted to higher energies. This is what one would expect for biaxial com-
pression of the bulk material. The strain splits the states 

2
e  and 

3
e  further. 

4 Results for zincblende CdSe NCs 

In this section we investigate the single particle states of spherical CdSe NCs within our 3
s p
c a

 TB-model. 
Due to the flexible surrounding matrix, these nanostructures are nearly unstrained [12] and their size is in 
between 10 and 40 Å in radius [4, 13, 14]. 
 We model such a NC as an unstrained, spherical crystallite with perfect surface passivation. The 
zincblende structure is assumed for the CdSe NC. We neglect surface reconstructions [15] and concen-
trate on the size dependence of the results obtained for the electronic structure of the NCs. 
 We consider NCs of diameter between 1.82 nm and 4.85 nm. For the largest NCs (of diameter 
4.85 nm) results for the four lowest lying electron and hole eigenstates are shown in Fig. 2 again in the 
form of an isosurface plot. The lowest lying electronic state 

1
e  obviously has spherical symmetry and can 

be classified as a 1s-state. Correspondingly the second state 
2
e  has the form of a 2s-state and the states 

3,4e  are p-states. Despite the spherical symmetry of the system this simple classification is no longer 
possible for the hole states, however. Even the lowest lying hole state 

1
h  has no full rotational invariance, 

i.e. it cannot be classified as being an s-state. This is due to the intermixing of different atomic  
TB-valence states in the NC. Similarly the higher hole states 

2 4
h h-  cannot clearly be classified as an  

s- or p-like state. This is an effect, which simple effective mass models cannot account for, but which 
will have implications in the calculation of matrix elements between these states, which enter selection 
rules for optical transitions etc. 
 The discrete electronic states of semiconductor NCs are experimentally accessible by scanning tunnel-
ing microscopy (STM) [4, 13]. From these measurements the energy gap nano

gap
E  as well as the splitting 

1 2e ,e
∆  between electron ground state 

1
e  and the first excited state 

2
e  can be determined. 

 In Figure 3(a) we compare our TB-results for CdSe NCs with diameters in between 1 82.  nm and 
4 85.  nm with STM results (dashed dotted line) and optical spectroscopy measurements (dotted line) [16]. 
The overall agreement with the TB results is very good, especially for the larger NCs. Deviations in  
the case of the small 2 nm NC arise from surface reconstructions [15] which are neglected here. When 
the same calculation is done without spin–orbit coupling (TB-NO SO), the energy gap nano

gap
E  is always  
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Fig. 2 (online colour at: www.pss-b.com) Isosurfaces (at 30% of the maximum probability density) of 

the squared electron and hole wavefunctions of spherical CdSe nanocrystals of diameter 4 85d = .  nm for 

the four lowest states. 
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Fig. 3 (a) Energy gap nano

gap
E  as a function of the nanocrystal diameter d. Compared are the results from 

our TB-model with (TB) and without (TB-NO SO) spin–orbit coupling, a STM (STM) [13] and an opti-

cal measurement (Optical) [13]. (b) Splitting 
1 2 2 1e ,e e e

E E∆ = -  between the lowest two electronic states as 

a function of the nanocrystal diameter d. The results from our TB-model, with (TB) and without (TB-NO 

SO) spin–orbit coupling, and from an STM measurement (STM, Ref. [13]) are displayed. Besides this re-

sults from infrared spectroscopy (IR, Ref. [17]) and optical methods (Optical, Ref. [13]) are shown. 

 
strongly overestimated by the TB-model, in particular for smaller nanocrystals. So the spin–orbit cou-
pling is important for a satisfactory reproduction of the experimental results. 
 Furthermore the calculated splitting 

1 2 2 1e ,e e e
E E∆ = -  between the first two electron states 

1
e  and 

2
e  is 

compared with experimental results in Fig. 3(b) as a function of the nanocrystal diameter d. We have 
done the calculations again without (TB-NO SO) and with spin orbit-coupling (TB). Without spin–orbit 
coupling the TB-model always overestimates the splitting 

1 2e ,e
∆ , but with spin–orbit coupling the results 

of the TB-model show good agreement with the experimental results. 

5 Results for self assembled wurtzite InN/GaN QDs 

In this section we consider a lens-shaped wurtzite InN QD, grown in the (0001)-direction on top  
of an InN wetting layer and embedded in a GaN matrix. Three different QDs with diameters 

4 5 5 7 7 7d = . , . , .  nm and heights of 1 6 2 3 3 0h = . , . , .  nm, respectively, have been investigated. In a first 
approach we neglect the influence of the strain. In Fig. 4 we show the lowest lying bound electron and 
hole states of the smallest nitride QD. Due to the rotational symmetry of the QD in the hexagonal crystal 
structure we have here an exact degeneracy of the 

2
e - and 

3
e -electron as well as of the 

2
h - and 

3
h -hole 

states. Otherwise we observe again that the hole states cannot be simply clasified as s- or p-like states 
according to their symmetry due to band mixing effects of the valence bands. 
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Fig. 4 (online colour at: www.pss-b.com) QD structrue shown from atop. Isosurfaces of the probability 

density with 20% (blue) and 80% (red) of the maximum value are shown. Depicted are the first two bound 

shells for electrons (left) and holes (right). Only one state is visualized for the two-fold degenerate p-shell, 

as the other one looks alike. The corresponding energies ( e,h

1 2 3E
, ,

) are measured relative to the valence band 

maximum of the bulk GaN. 
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 Under the influence of the electrostatic built-in field, the electron single-particle states are shifted 
towards the top of the QD whereas the hole states move to the bottom of the nanostructure. In case of the 
largest QD, a clear spatial separation of electron and hole wave functions is observed. This leads to a 
decrease in the dipole matrix elements. For the intermediate and largest QD with built-in field, the hole 
ground state is formed by the two degenerate states h

1
Φ  and h

2
Φ  (p-shell) whereas the first excited state 

h

3
Φ  (s-shell) is nondegenerate. This behavior is interchanged with decreasing QD size, and for the small-
est QD, the ground state is formed by the s-shell, see Fig. 4. 
 From the one particle states presented above an effective many body Hamiltonian can be obtained: 

 
0 C D

,H H H H= + +  (2) 

where 

 e † h †

0 i i i i i i

i i

H e e h hε ε= +Â Â  

is the one-particle part (being diagonal with respect to the calculated QD eigenstates), 

 ee † † hh † † he † †1 1
C 2 2ij kl i j k l ij kl i j k l ij kl i j k l

ijkl ijkl ijkl

H V e e e e V h h h h V h e e h
, , ,

= + -Â Â Â  (3) 

describes the Coulomb interaction and 

 
D

( | | e h c )i j

i j

H e i j h〈 〉
,

= + . .Â Er  (4) 

denotes the coupling to an external field E  in dipole approximation. In the spirit of a TB-model and its 
assumptions we approximate the Coulomb matrix elements by: 

 ( )i j k l

ijklV c c c c Vα β β α

αβ

* *

¢ ¢

¢

= - ,¢ÂÂ R R R R

RR

R R  (5) 

with 

 
2

0

0 r

( ) for ,
4π | |

e
V

ε ε

- = π¢ ¢
- ¢

R R R R
R R

 

and 

 
2

3 3 0

02

uc 0

1
(0) d d

4π | |
ruc

e
V r r V

V ε ε

= ª .¢
- ¢

Ú
r r

 (6) 

The operator r  is approximated by | | | | | |
α α β

α α α α β β
¢

= , , + , , , ,¢ ¢Â Â Â
R R R

r R R R R R r R R�〉 〈 〉 〈 〉 〈 , where r�   

denotes positions within a unit cell relative to R. The expansion coefficients i
c
α ,R

 are related to the i-th  

one-particle wave function ( ) ( )i

i
c
α α

α

Φ φ
, ,

,

=Â R R

R

r r  where ( )
α
φ

,R
r  denotes the atomic wave functions lo- 

calized at the lattice site R. 
 With the determined dipole and Coulomb matrix elements and the resulting many-body Hamiltonian 
the calculation of optical spectra can directly be performed as described in Ref. [18]. To keep the discus-
sion simple, we included only the first three bound electron and hole states in a configuration-interaction 
(CI) calculation [18]. The excitonic absorption and emission spectra, calculated by Fermi’s golden rule, 
are depicted for the smallest and the largest QD in Fig 5. The excitonic absorption for the small QD with 
(solid line) and without (dashed line) the built-in field is shown in Fig. 5(a). According to the dipole 
selection rules, the lower energy line is dominated by contributions where the electron is exited in the  



phys. stat. sol. (b) 244, No. 7 (2007)  2405 

www.pss-b.com © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

Original

Paper

Small QD Large QD

400 800 1200 1600

(a)

energy [meV]

ab
so

rp
tio

n 
[a

rb
it.

 u
ni

ts
]

400 800 1200 1600

(b)

energy [meV]

ab
so

rp
tio

n 
[a

rb
it.

 u
ni

ts
]

400 800 1200 1600

(c)

energy [meV]

em
is

si
on

 [a
rb

it.
 u

ni
ts

]

400 800 1200 1600

(d)

energy [meV]

em
is

si
on

 [a
rb

it.
 u

ni
ts

]

No Emission

 

Fig. 5 (online colour at: www.pss-b.com) (a) Excitonic absorption for the small QD with (solid line) and 

without (dashed line) the influence of the built-in field. (b) Same as (a) but for the large QD. Excitonic 

ground state emission for the small (c) and the large (d) QD with the influence of the built-in field. Without 

the built-in field, the ground state emission also vanishes for the large QD and is consequently not shown. 

 
s-shell and the hole in the p-shell, and vice versa for the high energy line. Under the influence of the 
built-in field, the whole spectrum is red-shifted. In addition, the built-in field leads to a spatial separation 
of electron and hole wave functions and therefore the oscillator strengths are drastically reduced. For the 
small QD no exciton ground state emission is observed, as discussed in detail in Ref. [19] and shown in 
Fig. 5(c). Figure 5(b) shows the excitonic absorption spectrum with (solid line) and without (dashed line) 
the built-in field for the large QD. Compared to the small QD, the separation of electron and hole wave 
functions is much more pronounced and therefore the reduction of the oscillator strength and the redshift 
in energy is much larger. For the large QD with the built-in field the ground state is a two-fold degenerate 
state ( p-shell). Therefore the main contribution to the exciton ground state is formed by the electron in the 
s-shell, and the hole in the p-shell. In contrast to the small QD, a nonvanishing exciton ground state emis-
sion can be observed, which is depicted in Fig. 5(d). Without the built-in field no emission is observed. 

6 Conclusion 

We have shown that an empirical tight-binding model is suitable for a realistic microscopic modelling of 
the electronic properties of semiconductor embedded quantum dots and nanocrystals. Starting from the 
TB-parameters, which well reproduce the bulk band structure, the nanostructures can be modelled taking 
realistically into account effects like strain, spin–orbit coupling, built-in electric fields, etc. From the 
obtained one-particle states the Coulomb and dipole matrix elements and therefore a many-body Hamil-
tonian with a coupling to an external field can be derived, from which optical spectra can be calculated. 
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