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Abstract. We present an sp3 tight-binding model for the calculation of the electronic and optical proper-
ties of wurtzite semiconductor quantum dots (QDs). The tight-binding model takes into account strain,
piezoelectricity, spin-orbit coupling and crystal-field splitting. Excitonic absorption spectra are calculated
using the configuration interaction scheme. We study the electronic and optical properties of InN/GaN
QDs and their dependence on structural properties, crystal-field splitting, and spin-orbit coupling.

PACS. 78.67.Hc Quantum dots – 73.22.Dj Single particle states – 71.35.-y Excitons and related phenomena

1 Introduction

Group-III nitrides have shown great potential in opto-
electronic devices with a wide range of applications [1].
InGaN/GaN quantum wells typically constitute the active
region in light-emitting diodes and laser diodes, covering
a wide spectral range from near ultraviolet to infrared. In
particular, devices with an active region based on pure or
almost pure InN are of great interest to reach operational
frequencies in the infrared spectral range [2]. The small
InN band gap (0.7–0.8 eV) [3] can be extremely useful for
telecommunication-wavelength devices. The combination
of this inherent property of InN with the self-assembly
of nanostructures based on this material, provides fur-
ther possibilities for useful future optoelectronic devices.
In particular, quantum dot (QD) structures are promising
candidates, acting as electron-hole recombination centers
increasing the emission efficiency. These zero-dimensional
nanostructures also have the potential to act as single-
photon emitting devices [4].

This work is dedicated to the investigation of the elec-
tronic and optical properties of self-assembled InN QDs.
The present study is based on a fully atomistic empirical
tight-binding model. In contrast to multi-band k · p ap-
proaches it takes into account the structure of the underly-
ing atomic lattice and is capable to describe the electronic
wave functions beyond an envelope function approxima-
tion. Our model includes strain effects and electrostatic
built-in fields, which are of major importance in group-III
nitride based nanostructures with an underlying wurtzite
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crystal structure. In this paper, special attention is paid
to the possible influence of the weak crystal-field (CF)
splitting and weak spin-orbit (SO) coupling on the local-
ized single-particle wave functions as well as on the opti-
cal properties of the investigated structures. These effects
have commonly been neglected in previous studies, some
of which were dedicated to GaN/AlN nanostructures [5–8],
others to InN/GaN nanostrucutres [9–14]. Since in these
materials both effects are merely of the order of a few meV
(Ref. [3]), this approximation can be well justified.

On a more fundamental level the resulting symmetry
properties dictated by spatial and spin degrees of freedom
and, taking SO coupling into account, by the coupled in-
fluence of both, have the potential to support or lift cer-
tain degeneracies in the electronic energy spectra. Based
on group-theoretical arguments we discuss that in the sys-
tem under investigation for both electrons and holes, at
most two-fold degeneracies are supported. This is espe-
cially of interest with regard to a recent discussion of the
energy level structure in semiconductor QDs with a zinc
blende structure [15] and recent results for wurtzite In-
GaN/GaN QDs obtained within an 8-band k·p model [16].
Following these general group-theoretical arguments, our
numerical results show that SO coupling and CF splitting
slightly change the results for the InN/GaN QD system
under investigation. However, the additional splittings in
the electronic energy shell structure caused by the SO cou-
pling are at most of the order of a few meV. From this,
no significant qualitative changes of the optical proper-
ties are found: The excitonic absorption lines show only
very small additional splittings and the interband dipole
selection rules are basically unaltered.

http://dx.doi.org/10.1140/epjb/e2008-00269-7
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Fig. 1. Schematic band structure of wurtzite semiconductors
with conduction band and three valence bands. The valence
band splittings introduced by crystal field splitting and spin-
orbit coupling are denoted by Δ1 and Δ2, respectively. Δ1 and
Δ2 are calculated according to equation (1). Additionally, the
symmetries of the irreducible representations Γi are given.

2 Theory and quantum dot model

2.1 The Tight-binding model

For the investigation of the single particle states in small
QD structures, the description by a multi-band approach
is required. In order to take into account the underlying
wurtzite structure of the structures under investigation,
we choose a microscopic sp3 tight-binding (TB) model.
The general aspects of the TB model are discussed in
detail in reference [12]. Here, we briefly summarize the
main ingredients of this model, and focus our attention
on the role of crystal-field (CF) splitting and spin-orbit
(SO) coupling.

In the sp3 TB model of reference [12] the relevant elec-
tronic structure of anions and cations is, for each spin ori-
entation, described by the outermost valence orbitals, s,
px, py and pz, and the overlap of these basis orbitals is re-
stricted to nearest neighbors. In other words, the Hamil-
tonian is represented in terms of a basis set |α,R, σ〉 of
localized states characterized by a site index R, the index
α that specifies the orbital type and the index σ as the
spin quantum number of the atomic orbitals on that site.
Being only of the order of a few meV, so far, the influence
of CF splitting and SO coupling has been neglected in the
model. In the present work, we extend our TB model [12]
to introduce these two contributions and investigate their
possible influence on the electronic single-particle states
and energies in InN/GaN QD systems.

The combination of CF splitting and SO interaction
leads to a so-called three-edge structure in the vicinity of
the Γ point. The top of the resulting valence band struc-
ture is commonly labeled as A, B, and C bands in order
of increasing energy. This three-edge structure is schemat-
ically shown in Figure 1. Two of these three bands are of
Γ7 and one of Γ9 symmetry. To describe this band struc-
ture in the vicinity of the Γ point in the framework of a

TB model one has to take into account both CF splitting
and SO interaction.

The SO coupling is included as outlined by Chadi in
reference [18]. In this approach, the SO interaction acts
on the TB basis states like the atomic SO operator

Hso =
�

4m2c2
1
r

∂Vatom

∂r
Ls

on atomic orbitals. Here, Vatom is the atomic potential,
s the spin operator and L denotes the operator of the
angular momentum. The SO matrix elements are

〈α′R′σ′|Hso|α,Rσ〉 =

〈α′R′| �

4m2c2
1
r

∂Vatom

∂r
L|α,R〉〈σ′|s|σ〉.

If one considers only contributions on the same atom,
the evaluation of all possible terms gives non-zero re-
sults in case of

〈px,R,±|Hso|pz,R,∓〉 = ±λ
〈px,R,±|Hso|py,R,±〉 = ∓iλ
〈py,R,±|Hso|pz,R,∓〉 = −iλ,

and their complex conjugates. To obtain a compact no-
tation, we denote the states |↑〉 and | ↓〉 by |+〉 and |−〉,
respectively. Due to the high ionicity of the bonds in the
nitride system [19], the contribution of the SO coupling
to the valence band structure is dominated by the anion
contributions. Therefore, by introducing the parameter λ,
we include spin-orbit coupling at the anion sites only. The
parameter λ is used to reproduce the correct splitting Δ1

of the valence bands A and B.
As discussed in reference [17], the small CF splitting

Δcf of the wurtzite crystal differentiates the pz orbital
from the px and py orbitals. Pseudo-potential calculations
in local density approximation indicate that for the stud-
ied materials the bulk crystal field splitting between the
A and C valence bands, schematically shown in Figure 1,
cannot be reproduced from first principles, unless third-
nearest-neighbor interactions are taken into account [20].
The TB model discussed in reference [12] considers only
nearest-neighbor hopping matrix elements and treats the
four nearest neighbor atoms as equivalent. To account for
the A − C splitting within the empirical sp3 TB model
with nearest-neighbor coupling, we introduce the addi-
tional parameter EApz ,pz

on the anion sites for the on-site
matrix elements of the pz orbitals. This additional term is
used to reproduce the splitting Δ2 of the A−C bands at
the zone center Γ . Such an ansatz has been successfully
used to describe the electronic and optical properties of
wurtzite CdSe nanocrystals [21–24], and is similar to the
inclusion of the CF splitting in the framework of a k · p
approach [16], where the CF splitting is introduced as di-
agonal contribution to the Hamiltonian. The magnitude
of the CF splitting in InN and GaN, respectively, is of the
same order of magnitude as in CdSe [21]. Therefore, it is
reasonable to believe that a more sophisticated inclusion
of the CF splitting in our model would only yield minor
changes to the results.
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Fig. 2. (Color online) Bulk band structure of wurtzite (a)
InN and (b) GaN obtained using an sp3 TB model including
crystal field splitting and spin-orbit coupling. The insets show
the three-edge valence band structure in the vicinity of the Γ
point.

With four atoms per unit cell, the resulting Hamilto-
nian is a 32 × 32 matrix for each k-point. This Hamilto-
nian parametrically depends on the different TB matrix
elements. The parameters given in reference [12] have been
re-calculated to reproduce the three-edge structure of the
wurtzite band structure [3,25,26] in the vicinity of the Γ
point. The additional matrix elements λ and EApz ,pz

are
adjusted to reproduce the splittings between the different
valence bands (A, B and C bands), which are given by [27]

Δ1,2 =
(
Δso +Δcf

2

)
∓

√(
Δso +Δcf

2

)2

− 2
3
ΔsoΔcf,

(1)
where SO and CF splitting are denoted as Δso and Δcf

respectively. Table 1 summarizes the resulting TB param-
eters. The bulk band structures obtained from these pa-
rameters are shown in Figure 2 for GaN and InN. The
‘complicated’ valence band structure in the vicinity of the
Γ point shows very good agreement with other TB mod-
els [28] (cf. insets of Fig. 2), ab-initio approaches [29],
pseudo potential and k · p calculations [30].

2.2 Geometry of the quantum dot structure

In the framework of a TB model, the QD is modeled on
an atomistic level. The TB parameters at each atom site
R of the underlying wurtzite lattice are set according to
the bulk values of the respective occupying atom. In the
following, we consider lens-shaped InN QDs with spherical
base, grown in c direction and residing on an InN wetting
layer (WL). The model geometry is shown in Figure 3.
The entire structure is embedded inside a GaN matrix.
For the numerical calculations, a finite cell (box) with a
wurtzite lattice and fixed (zero) boundary conditions is
used. The cell is sufficiently large to avoid numerical ar-
tifacts in the bound single particle states due to the cell
boundaries (in particular, no artifacts from the artificial
cubic symmetry of the supercell are found). In the fol-
lowing we discuss three different QD sizes with diameters

Table 1. Tight-binding parameters (in eV) for the nearest
neighbors of wurtzite InN and GaN. The notation of refer-
ence [17] is used.

InN [eV] GaN [eV]

Δcf = 0 Δcf �= 0 Δcf �= 0 Δcf = 0 Δcf �= 0 Δcf �= 0

Δso = 0 Δso = 0 Δso �= 0 Δso = 0 Δso = 0 Δso �= 0

E(s, a) –6.791 –6.5134 –6.6046 –11.012 –8.9893 –8.5282

E(p, a) 0.000 0.0000 0.0000 0.005 0.0015 –0.0024

E(pz,a) 0.000 –0.0418 –0.0400 0.005 –0.0203 –0.0208

E(s, c) –3.015 –3.3923 –3.3500 1.438 0.7851 0.6945

E(p, c) 8.822 8.8220 8.8203 10.896 10.0986 10.0996

V (s, s) –5.371 –5.5267 –5.5330 –5.318 –5.6918 –5.6808

V (x, x) 0.022 0.0156 0.1221 –0.222 –0.1223 –0.0699

V (x, y) 6.373 6.3794 6.2772 7.136 6.7902 6.7328

V (sa, pc) 0.370 0.9576 0.9307 0.628 0.2641 1.3633

V (pa, sc) 7.5 7.5574 7.4136 7.279 8.0324 7.7173

λ 0 0 0.0016 0 0 0.0023

d = 4.5, 5.7, 7.7 nm and heights h = 1.6, 2.3, 3.0 nm, re-
spectively. The WL thickness is one lattice constant c.

In a first step we neglect strain induced displacements
of the atoms and concentrate on effects which can exclu-
sively be attributed to CF splitting and SO coupling. The
influence of strain effects will be discussed separately in
Section 3.2.

In contrast to semiconductor heterostructures with a
zinc blende structure, the III–V wurtzite nitrides exhibit
a considerably larger built-in electrostatic field [31]. In or-
der to account for this field in our model, the electro-
static potential φp(r) is obtained from the solution of the
Poisson equation and enters as a site-diagonal contribu-
tion Vp(r) = −eφ(r) to the TB Hamiltonian [10]. The
polarization P has two contributions, the spontaneous po-
larization Pspont and the piezo-electric contribution Ppiezo

caused by strain inside the system. For the latter we apply
the approximation described in reference [32] and assume
Ppiezo ∼ ez, which is a reasonable approximation for the
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Fig. 3. (Color online) Schematic visualization of the finite size
supercell in which the QD geometry is modeled. The investi-
gated lens-shaped InN QDs reside on an InN wetting layer
(WL) and have circular symmetry around the z-axis. The QD-
WL system is embedded in a GaN matrix.
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considered QD geometry [10]. Further details of this pro-
cedure are given in reference [12].

2.3 Many-body hamiltonian, coulomb and dipole
matrix elements

Having discussed the TB Hamiltonian used for the cal-
culation of the bound single-particle states, we now turn
our attention to the investigation of the optical properties
of the studied QD system. We start with the following
Hamiltonian H that describes the dynamics of the inter-
acting charge carriers in the system:

H = H0 +HC +HD. (2)

This Hamiltonian consists of three parts and is given in
the basis of the QD one-particle eigenstates. The contri-
bution H0

H0 =
∑
i

εei c
†
ici +

∑
i

εhi h
†
ihi,

is the one-particle part, which is diagonal in the chosen
basis,

HC =
1
2

∑
ijkl

V eeij,kl c
†
ic

†
jckcl +

1
2

∑
ijkl

V hhij,kl h
†
ih

†
jhkhl

−
∑
ijkl

V heij,kl h
†
i c

†
jckhl, (3)

describes the Coulomb interaction of electrons (e) in the
conduction band states and holes (h) in the valence band
states, and

HD =
∑
i,j

(
e〈i|Er|j〉 cihj + h.c.

)
, (4)

includes the coupling of the electronic system to an exter-
nal electromagnetic field E in dipole approximation. The
creation and annihilation operators for electrons (holes)
in the single-particle state |i〉 with energy εei (εhi ) are de-
noted by c†i (h†i ) and ci (hi), respectively. The Coulomb
interaction matrix elements are labeled by V λλ

′
ijkl .

The calculation of the Coulomb interaction matrix el-
ements requires – at least in principle – the knowledge
of the localized basis states implicitly underlying the TB
wave functions. However, since the Coulomb matrix ele-
ments are dominated by the long-range character of the
interaction, in the calculation of these matrix elements the
charge densities in the localized orbitals are approximated
by point charges. A more detailed discussion of this issue
is given in reference [12]. This approximation leads to the
following explicit form of the Coulomb matrix elements:

Vijkl =
∑
RR′

∑
αβ

ci∗Rαc
j∗
R′βc

k
R′βc

l
RαV (R − R′), (5)

with

V (R − R′) =
e20

4πε0εr|R − R′| for R �= R′

and

V (0) =
1
V 2
uc

∫
uc

d3rd3r′
e20

4πε0εr|r − r′| ≈ V0 .

The expansion coefficients ciα,R are related to the ith one-
particle wave function Φi(r) =

∑
α,R c

i
α,Rφα,R(r) where

φα,R(r) denotes the atomic wave functions localized at
the lattice site R.

To calculate the dipole matrix elements dehij ∝
〈ψei |r|ψhj 〉 entering equation (4), we use numerically or-
thogonalized Slater orbitals [12] to account for the short-
range character of the dipole operator. The numerically
orthogonalized Slater orbitals fulfill the basic properties of
the localized basis states underlying the TB model: sym-
metry, spatial orientation [33], and orthogonality. We also
include the anion-cation structure of the crystal and the
slight nonlocality of the dipole operator by including con-
tributions from up to second nearest neighbors.

In analogy to the bulk systems, a separation of the or-
bital and spin part (both included in the index α) is pro-
hibited by the SO coupling. In contrast to the bulk case, as
will be discussed in the following section, the strong band
mixing prevents a strict classification of QD single-particle
states according to their angular momentum. Therefore,
even total angular momentum selection rules are no longer
applicable. Ignoring the band mixing characteristics in the
zero-dimensional structures, any treatment of many-body
effects based on strict selection rules for the total angular
momentum, yields inaccurate predictions of level degen-
eracies. However, as discussed in detail in reference [13],
the selection rules can always be analyzed on symmetry
grounds.

With the dipole and Coulomb matrix elements and the
many-body Hamiltonian, given in equation (2), the calcu-
lation of optical spectra can be carried out as described in
references [13,34].

3 Results for lens-shaped InN quantum dots

3.1 Single particle states and energies

Having determined the TB parameters, the single-particle
states and energies of the three different QDs discussed in
Section 2.2 can be calculated.

First we turn our attention to the single particle states
of the large QD (d = 7.7 nm, h = 3.0 nm). In order to
assess the impact of the CF splitting and SO coupling,
we have performed our calculations in three steps. In a
first step we neglect both SO interaction and CF effects
(Δso = 0, Δcf = 0). In this case we are left with the sp3 TB
model discussed in reference [12]. In step two we introduce
only the crystal field splitting (Δso = 0, Δcf �= 0), by in-
cluding the additional parameter EApz ,pz

in the TB model.
In the final step both contributions are taken into account
(Δso �= 0, Δcf �= 0). In each step the TB parameters are
re-optimized in such a way that band gap and the ener-
getic positions of other bands of the wurtzite bulk band
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Fig. 4. (Color online) Top view of the large lens-shaped InN
QD structure with the first three bound states for electrons
(upper part) and holes (lower part) in the presence of crystal-
field splitting (Δcf �= 0) and spin-orbit coupling (Δso �= 0).
Depicted are isosurfaces of the probability density with 10%
(blue) and 60% (red) of the maximum value.

structure at the Γ point are reproduced. In other words,
in the first step (Δso = Δcf = 0) we use the parameters
given in reference [12]. In step two (Δso = 0, Δcf �= 0)
the parameter EApz ,pz

is included in the TB-model to re-
produce the splitting of the A − C bands. Of course all
the other matrix elements are also re-adjusted to obtain
the correct band structure. Starting from these TB pa-
rameters, in the final step (Δso �= 0, Δcf �= 0) the addi-
tional parameter λ is taken into account to reproduce the
splitting of the bands A − B. Again, all parameters are
re-adjusted to reproduce the correct energetic positions of
the different bands. The resulting parameters are given in
Table 1. Figure 4 shows the top view of the QD geometry
and first three bound one-particle states for electrons and
holes, respectively, including the influence of the built-in
field, crystal-field splitting and spin-orbit coupling.

According to the nodal structure, the depicted elec-
tron ground state ψe1 can be classified as s-like. The first
two excited states ψe2 and ψe3 can be classified as p+ and
p− states, respectively. Such a classification is not possible
for the hole states, since these states undergo strong band
mixing effects. Considering only a single valence band for
the description of the bound hole states in an InN QD is
not valid. The observation of strong band mixing effects is
in agreement with other multi-band approaches [5,16,35].
Our analysis reveals that CF splitting and SO coupling
do not alter the single-particle level structure. In other
words, for the ordering of the first three bound electron
and hole states in a lens-shaped InN QD, the contributions
from SO and CF splitting are small. Also the influence of
these two contributions on the shape of the single parti-
cle wave functions is small. This is illustrated in Figure 5
for the planar-integrated electron ψe1 and hole ψh1 ground
state probability density Pplanar(z) =

∑
i,j |ψ(xi, yi, z)|2
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Fig. 5. (Color online) Planar-integrated probability density
Pplanar for the electron (a) and hole (b) ground state, in the
absence of crystal-field splitting and spin-orbit coupling (No
CFSO). Furthermore, the differences in the planar-integrated
probability densities ΔPplanar when taking crystal-field split-
ting and spin-orbit coupling into account are displayed in (c)
for the electron and in (d) for the hole ground state. The calcu-
lations are done for the large QD in the presence of the built-in
field.

in the largest InN QD. Figures 5a and 5b display this
quantity for the electron and hole ground state in the ab-
sence of crystal-field and spin-orbit coupling, while (c) and
(d) show the changes in the planar-integrated probability
densities ΔPplanar when taking both contributions sub-
sequently into account. The crystal-field splitting Δcf is
nearly four times larger than the spin-orbit coupling Δso,
therefore the difference between ΔPCF

planar and ΔPCFSO
planar in

Figures 5c and 5d is small. These calculations include the
built-in field. Therefore, the electron states are squeezed
into the cap of the QD, while the hole states are con-
straint to a few atomic layers at the bottom, in the region
of the wetting layer. Consequently, the spatial overlap of
electron and hole wave function is reduced which leads to
a reduction of the dipole matrix elements. Together with
a significant shift of the single-particle energy levels (not
shown), this is the manifestation of the well known quan-
tum confined Stark effect (QCSE) [36,37].

After this discussion of the single-particle states we
focus on the single-particle energies of the large QD.
In Table 2 the energies of the first three bound elec-
tron and hole states under the influence of the built-
in field are displayed. From this table we conclude that
the electron states are only slightly shifted to lower ener-
gies by CF splitting and SO coupling. Without SO cou-
pling (Δso = 0), and taking only CF splitting into ac-
count (Δcf �= 0), the hole states are shifted to higher
energies. With SO coupling, the hole energy spectrum is
shifted to lower energies, compared to the case neglect-
ing both contributions (Δcf = 0, Δso = 0). Additionally
it turns out that the degeneracy of the hole states ψh2
and ψh3 (p-shell) is lifted when SO coupling is considered.
Of course, each state is still twofold degenerate due to
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Table 2. Single-particle energies for the large InN QD in the
presence and absence of crystal field splitting and spin-orbit
coupling. Each of the given states is two-fold degenerate due
to time reversal symmetry.

Δso = 0, Δcf = 0 Δso = 0, Δcf �= 0 Δso �= 0, Δcf �= 0

Ee
1 [eV] 1.4770 1.4585 1.4557

Ee
2 [eV] 1.6660 1.6464 1.6417

Ee
3 [eV] 1.6660 1.6464 1.6418

Eh
1 [eV] 0.9021 0.9041 0.8993

Eh
2 [eV] 0.9021 0.9041 0.8981

Eh
3 [eV] 0.8964 0.8989 0.8924

Table 3. Character table for the single group C3v (Ref. [38]).

{E} {2C3} {3σv}
Γ1 1 1 1
Γ2 1 1 –1
Γ3 2 –1 0

Table 4. Character table for the double group C̄3v (Ref. [39]).

{E} {Ē} {2C3} {2C̄3} {3σv} {3σ̄v}
Γ1 1 1 1 1 1 1
Γ2 1 1 1 1 –1 –1
Γ3 2 2 –1 –1 0 0
Γ4 2 –2 1 –1 0 0
Γ5 1 –1 –1 1 i −i
Γ6 1 –1 –1 1 −i i

time reversal symmetry [40]. Because of the small SO en-
ergies of the bulk materials, the splitting is rather small
(Δψh

1 ,ψ
h
2

= 1.2 meV). The same is true for the electron
p-states. Here the influence of the SO coupling is even
weaker (Δψe

1,ψ
e
2

= 0.1 meV).
As discussed recently, reference [13], for the system

under investigation, a TB model which neglects the weak
crystal-field splitting and spin-orbit coupling, must result
in degenerate p-shells for electrons and holes. The origin
of these degeneracies is the C3v symmetry of the combined
system of QD geometry and underlying wurtzite lattice.

From the splitting of the hole states ψh2 and ψh3 , one can
deduce that the spin-orbit interaction alters the symmetry
of the system. This can be understood by an analysis of the
corresponding character tables for C3v single and double
groups.

Without spin-orbit coupling, the symmetry of the sys-
tem is determined by the single group C3v. Looking at
the character table, shown in Table 3, we conclude that
this group allows for double degenerate levels, since the
group contains a two-dimensional representation Γ3. One
example of such degenerate states are the p-shell states for
electrons (ψe2; ψe3) and holes (ψh1 ; ψh2 ), shown in Figure 4.
Of course, in the absence of the SO coupling, in addition,
each state is two-fold spin degenerate.

Including SO coupling, one has to deal with the dou-
ble group C̄3v. The character table of the double group
is given in Table 4. This group allows only two dimen-
sional representations, even if the time reversal symmetry
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Fig. 6. (Color online) Shown are the first three electron and
hole single-particle energy-levels for the three investigated QD
sizes with increasing diameter from left to right (the lines are
included as a guide to the eye). The results of the different
calculations are indicated by different symbols and colors: (No
CFSO) without spin-orbit coupling and crystal-field splitting,
(CF, No SO) with crystal-field splitting and without spin-orbit
coupling, and (CFSO) in the presence of both contributions.

is included [40]. More specifically, the degeneracy of the ir-
reducible representations Γ3 and Γ4 is not doubled by the
time reversal symmetry [40]. In other words, no four-fold
degenerate state in the energy spectrum can exist. Con-
sequently, the electron p states (ψe2 and ψe3) are also no
longer degenerate, but in this particular case the splitting
is only of the order of some μeV. We note that this is in
contrast to the findings in reference [16], where (at least
numerically) exact degeneracy of the electronic p-states
has been reported.

Figure 6 shows the dependence of the energy spectrum
on the QD size for the first three bound electron and first
three bound hole single-particle states in the presence of
the built-in field. Again, results without (No CFSO) and
with (CFSO) CF splitting and SO coupling are shown.
Additionally, results in the absence of SO coupling but in
the presence of the CF splitting are displayed. All energies
are measured relative to the valence-band maximum of
GaN. As expected from a naive particle-in-a-box picture,
the binding of the electrons and holes in the QD becomes
stronger when the QD size is increased. Furthermore, the
influence of CF splitting and SO coupling on the energy
spectrum is negligible.

A central result of the previous work [12,13] was that
the strong internal electrostatic field can reverse the en-
ergetic ordering of the first three bound hole states. We
find that, for the intermediate and the largest InN QD,
in the presence of the built-in field, the ground state is
formed by the twofold degenerate p states ψh1 and ψh2 ,
shown in Figure 4. This behavior is interchanged with de-
creasing QD size, where, for the smallest QD, the s state
ψh3 becomes the hole ground state. To concentrate on this
reordering of the hole s and p shell, the energy splitting
ΔEhs,p = Ehs − Ehp is displayed in Figure 7. In order to
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Fig. 7. (Color online) The energy splitting ΔEh
s,p = Eh

s − Eh
p

between the s and the p shell for the holes is shown in the ab-
sence (No CFSO) and presence (CFSO) of crystal field (Δcf)
and spin-orbit (Δso) splitting. Results are also shown, where in
addition to crystal field and spin-orbit splitting a strain field is
included (CFSO+Strain). The influence of the strain field on
the electronic properties is discussed in detail in Section 3.2. In
all three cases, ΔEh

s,p changes sign with increasing QD diame-
ter d, as a level reordering occurs (the dashed lines are included
as a guide to the eye). The built-in field is included in all the
calculations.

analyze the impact of CF splitting and SO coupling on
the ordering of the hole level structure, we calculate the
splitting ΔEhs,p when both contributions are introduced
in the TB approach. Since the hole p shell is no longer
degenerate, we average over the single-particle energies of
the states ψh1 and ψh2 . The energy splitting ΔEhs,p without
SO coupling and CF splitting is also shown in Figure 7.
From the comparison with ΔEhs,p in the absence of these
contributions, we find that the SO coupling and the CF
splitting have only a negligible effect on the energy split-
ting ΔEhs,p. Furthermore, the ordering of the first three
bound hole states is unaffected by SO coupling and CF
splitting.

In summary, the CF splitting alone cannot alter the
symmetry of the system and leads only to a small energy
shift of the first three bound electron and hole states. The
SO interaction, and only this contribution, can modify
the symmetry, and lifts certain degeneracies. However, the
splitting of the electron and hole p shell due to the SO cou-
pling, is very small compared to the level spacing of the
different shells. Moreover, in the presence of SO coupling
and CF splitting, one obtains the same level ordering of
the energetically lowest hole states (s- and p-shell) as in
the case were these contributions are not taken into ac-
count. This analysis indicates that it is well justified to
neglect these small corrections of the CF splitting and the
SO coupling in the system under consideration.

3.2 Influence of strain

So far we have neglected the influence of the lattice mis-
match between InN and GaN. The lattice mismatch leads
to the appearance of a strain field in the nano-structure.

This field modifies the energies of the bound electron and
hole states.

For the electron states, caused by the underlying
wurtzite lattice and the assumed QD geometry, the strain
field produces only an energy shift of the bound single
particle states [7]. In contrast to QDs with a zinc blende
structure [15], no degeneracies are lifted by the strain field.
The situation is more complicated for the hole states. The
strain field modifies the local valence band edges, and can
therefore lead to a splitting of the different energy bands.
As discussed in reference [16], due to the biaxial strain in
the basal plane, the first two valence bands (A and B) are
shifted to higher energies, compared to the unstrained ma-
terial, whereas the third valence band (C band) is shifted
to lower energies. These energy shifts may also increase
the influence of spin-orbit coupling and crystal field split-
ting on the bound single particle states.

To investigate the influence of these shifts and the ef-
fect of the possible valence band splittings, we proceed in
the following way:

Since the TB parameters are fitted to the bulk band
structure, we re-calculate the bulk band structure of InN
in the presence of a strain field. To obtain the strain de-
pendent valence band edge we apply [43]

E1 = Δcf +
1
3
Δso + θε + λε , (6)

E2,3 =
Δcf

2
− Δso

3
+
θε
2

+ λε (7)

∓

√√√√
(
Δcf − Δso

3 + θε

2

)2

+
2
9

(Δso)
2
, (8)

where θε and λε are given by

θε = D3εzz +D4 (εxx + εyy) ,
λε = D1εzz +D2 (εxx + εyy) .

Here, D1, D2, D3 and D4 are the valence band deforma-
tion potentials and εii denotes the diagonal components
of the strain tensor ε. For the components εii we assume:

εzz =
aGaN − aInN

aInN
, εxx = εyy = −2C13

C33
εxx, (9)

where aGaN and aInN are the lattice constants of the sub-
strate (GaN) and the QD material (InN), respectively, and
C13 and C33 are the stiffness constants. Strictly speak-
ing, these equations apply only to a quantum well, since
they neglect shear strain components and the fact that
the strain field in a QD is position dependent. However,
due to the symmetry of the QD structure and the under-
lying wurtzite lattice, the strain field cannot lift degenera-
cies. This is also confirmed by results of Winkelnkemper
et al. [16] for an InxGa1−xN QD with a comparable sym-
metry. Furthermore, the hole states, for which the modi-
fication of the valence band edge is of major importance,
are strongly localized in the region of the QD. Therefore,
the variation of the strain field outside the QD is of minor
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Table 5. Material parameters for GaN and InN. If not indi-
cated otherwise, all parameters are taken from reference [41].

Parameter GaN InN

a (Å) 3.189 3.545

c (Å) 5.185 5.703

Δso (eV) 0.010 (Ref. [3]) 0.005 (Ref. [3])

Δcf (eV) 0.017 (Ref. [3]) 0.040 (Ref. [3])

C13 (GPa) 11.4 9.4

C33 (GPa) 38.1 20.0

(ac − D1) (eV) –9.6 (Ref. [42]) –9.6 (Ref. [42])

(ac − D2) (eV) –8.2 (Ref. [42]) –8.2 (Ref. [42])

D3 (eV) 1.9 (Ref. [42]) 1.9 (Ref. [42])

D4 (eV) –1.0 (Ref. [42]) –1.0 (Ref. [42])

ac (eV) –4.9 (Ref. [3]) –3.5 (Ref. [3])

importance. In the region of the InN QD, we use the lat-
tice constant aGaN of GaN, to take into account, that the
QD is pseudomorphically grown on the GaN substrate.

According to reference [43], the band gap shift is
given by

ΔEgap = Egap
0 + Pcε − (θε + λε) , (10)

with

Pcε = acεzz + ac (εxx + εyy) ,
λε = D1εzz +D2 (εxx + εyy) ,

where ac denotes the conduction band deformation poten-
tial. The different parameters are listed in Table 5. The
TB parameters are readjusted to reproduce the bulk band
structure in the vicinity of the Γ point. The resulting va-
lence band structure in the vicinity of the Γ point is de-
picted in Figure 8. The band structure exactly reflects the
behavior which is expected for the local band structure
in the region of the QD [16]: the first two valence bands
(A and B) are shifted to higher energies while the third
band (C) is shifted to lower energies. The calculated TB
parameters are now used to investigate the influence of
strain effects on the electronic states.

Starting from these new TB parameters one can re-
calculate the single-particle states and energies of the
three different QDs discussed in the preceding section, tak-
ing into account both CF and SO splitting. First we focus
on the single-particle energies of the large QD (d = 7.7
nm, h = 3.0 nm). In Table 6, the energies of the first
three bound electron and hole states, including the built-
in field are displayed. Each of the given states is two-fold
degenerate due to time reversal symmetry. The results in
the absence and in the presence of the strain effects are
compared. First of all, the strain merely produces an en-
ergy shift of the single particle states. The strain field
shifts both electron states and hole states to higher ener-
gies. This behavior reflects the local band edge shifts of
conduction and valence bands. Following the discussion of
the previous section, no four-fold degenerate states can ex-
ist taking SO coupling into account. As already discussed,

−0.5

−0.4

−0.3

−0.2

−0.1

0

← M Γ A →

E
n
e
rg

y
[e

V
]

Fig. 8. (Color online) Calculated TB valence band structure
in the vicinity of the Γ point. Unstrained (black solid lines)
and under compressive biaxial strain in the basal plane with
elastic relaxation along the [0001] direction (red dashed lines).
The splitting between the A and B valence bands at the Γ
point is ≈ 3.1 meV (≈ 3.1 meV) in unstrained (strained) InN.

Table 6. Single-particle energies for the large InN QD in
the presence and absence of strain effects. Each of the given
states is two-fold degenerate due to time reversal symmetry.
The internal electrostatic field is included in the calculation.

Δso �= 0, Δcf �= 0

Without Strain With Strain

Ee
1 [eV] 1.4557 1.7740

Ee
2 [eV] 1.6417 1.9625

Ee
3 [eV] 1.6418 1.9626

Eh
1 [eV] 0.8993 0.9126

Eh
2 [eV] 0.8981 0.9118

Eh
3 [eV] 0.8924 0.9069

the first two excited states ψe2 and ψe3 are nearly degener-
ate in the absence of the strain field. Also in the presence
of the strain field, these states are split by the SO coupling
by 0.1 meV only. This analysis shows that the splitting of
the electron p-states is not altered by the strain field and
remains very small compared to the energy separation of
electron s- (ψe1) and p-shell (ψe2 and ψe3). The splitting
of the hole states ψh1 and ψh2 is nearly unaffected by the
strain field.

Additionally, the level ordering is not modified by the
strain field. In the presence of the strain field, the intrinsic
electrostatic field still reverses the energetic ordering of the
first three bound hole states. The energy splitting ΔEhs,p
between the hole s and p shell including the strain field is
displayed in Figure 7. We compare these results with the
other results shown in Figure 7, where the strain field is
absent. In conclusion, the strain field is of minor impor-
tance for the energy splittings, and, most importantly, the
ordering of the first three bound hole states is unaffected.
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Fig. 9. (Color online) Excitonic absorption spectra for the
largest InN QD in the absence of crystal field and spin-orbit
splitting (a), in the presence of crystal field splitting and ab-
sence of spin-orbit coupling (b) and in the presence of crystal-
field and spin-orbit splitting (c). The insets show the same data
for frequencies close to the absorption peaks in (b) and (c).

3.3 Excitonic absorption spectra

In Section 2.3 we have discussed the calculation of dipole
and Coulomb matrix elements. The evaluation of excitonic
absorption spectra in this section can be performed start-
ing from the many-particle Hamiltonian, equation (2), in
second quantization as given in Section 2.3. For the local-
ized states configuration-interaction calculations are per-
formed. For the sake of simplicity, only the first three
bound electron and hole states are included. This can be
justified by their energy separation to higher shells in the
structure. The excitonic absorption spectra are calculated
using Fermi’s golden rule [34].

Figure 9a shows the excitonic absorption spectrum for
the largest InN QD in the absence of CF and SO splitting,
while Figure 9b displays the spectrum in presence of the
CF splitting but in the absence of SO coupling. In Fig-
ure 9c, the absorption spectrum in the presence of both
CF and SO splitting is depicted. The different absorption
lines in each spectrum correspond to the excitation of an
exciton in the QD. In case (a) and (b) the peak on the low
energy side corresponds to transitions where the electron
is mainly in the ground state ψe1, and the hole is mainly
in the states ψh1 and ψh2 . Since the hole states ψh1 and ψh2
are degenerate one obtains only a single peak on the low
energy side. Due to the SO coupling, the states ψh1 and
ψh2 are split by about 1.2 meV. This splitting in the sin-
gle particle states results in two lines on the low energy
side in Figure 9c (see also the inset). Since the splitting
in the single-particle states ψh1 and ψh2 is very small, the
splitting of the two peaks on the low energy side is also
very small. This emphasizes again, that in the system un-

der consideration the SO coupling and the CF splitting
introduce only negligible corrections to the excitonic spec-
trum. Due to the symmetry of the QD and the underly-
ing wurtzite structure, there is no polarization anisotropy.
This is in contrast to lens-shaped InAs QDs with a zinc
blende structure, as discussed in reference [44], where the
C2v symmetry leads to polarization anisotropy.

The peak on the high energy side mainly corresponds
to the excitation of the hole in the state ψh3 and the states
ψe2 and ψe3. Since the electron states ψe2 and ψe3 are exactly
degenerate in cases (a) and (b) and nearly degenerate in
case (c), only a single line is visible on the high energy
side (cf. inset of Fig. 9).

Including strain effects, we obtain nearly the same
splitting of the states ψh1 and ψh2 . Furthermore, the elec-
tron states ψe2 and ψe3 are still nearly degenerate. Only the
single-particle energy gap is enlarged by the strain field
and therefore the whole excitonic absorption spectrum is
shifted to higher energies. The excitonic absorption spec-
trum (not shown) resembles the spectrum in Figure 9c.

4 Conclusion

In this work we have presented an atomistic TB calcula-
tion of the electronic and optical properties of lens-shaped
InN QDs. We focused our attention on the influence of the
crystal-field splitting and the spin-orbit coupling on the
electronic structure as well as on the optical properties.
As it turns out, only the spin-orbit coupling lifts certain
degeneracies in the single particle spectrum. This result
is confirmed by the inspection of the character table of
the double group C̄3v, which reveals that no four fold de-
generate state can exist. From our calculations we obtain
only small splittings (∼2 meV) in the single-particle spec-
trum as well as in the excitonic absorption spectrum. Our
results indicate that spin-orbit coupling and crystal field
splitting will only play a minor role in lens-shaped InN
QDs with a wurtzite structure. However, we do not rule
out that the importance of spin-orbit coupling and crystal-
field splitting may depend on the specific system under
investigation even within the group-III nitride material
system (where both effects are weak). Let us consider
the electronic structure of truncated pyramidal GaN/AlN
QDs grown in the zinc blende phase [45,46]. Electronic
structure calculations in the framework of k · p mod-
els [7,35], neglecting spin-orbit coupling, indicate a twofold
degenerate (without spin) hole ground state. Even though
it is intrinsically weak, taking spin-orbit coupling into ac-
count for this system, the degeneracy is lifted [47,48], lead-
ing to the appearance of additional lines in the optical
spectra with a splitting considerably larger (∼6 meV) than
in the results of the present work.
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