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Recent time-resolved differential transmission and Faraday rotation measurements of long-lived

electron-spin coherence in quantum wells displayed intriguing parametric dependencies. For their

understanding we formulate a microscopic theory of the optical response of a gas of optically incoherent

excitons whose constituent electrons retain spin coherence, under a weak magnetic field applied in the

quantum well’s plane. We define a spin beat susceptibility and evaluate it in linear order of the exciton

density. Our results explain the many-body physics underlying the basic features observed in the

experimental measurements.
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Spurred by prospects of applications in spintronics, the
long-lived electron-spin coherence of excitations in semi-
conductor quantum wells has been undergoing intensive
investigation [1–3]. Experimentally one of the most direct
and convenient ways to study this spin coherence is
through the measurement of its effects on the quantum
well’s optical response. Nonlinear optics techniques such
as differential transmission (DT) and Faraday rotation (FR)
of optical probes have been used for this purpose [4–7].
Typically, the electron-hole excitation is produced in a pure
spin state aligned with the quantum well’s growth axis in
the presence of a weak magnetic field applied along the
well’s plane [Voigt geometry, Fig. 1(a)]. Time-resolved DT
and FR signals oscillating at the electron-spin Zeeman
splitting frequency are then generated by probe pulses at
delay times spread over hundreds of picoseconds.

While the decay of the electron-spin signals is by now
well understood (for a review, see, e.g., [8]), other funda-
mental parametric dependencies are still under active in-
vestigation. Recent reports on the measurement (DT and
FR) and control of electron-spin coherence in a pumped
population of excitons [6,7,9] showed intriguing depen-
dencies on probe frequency and intensity, which could
reveal important information about the nonlinear optical
properties of the electron-spin coherent, but optically in-
coherent, excitons. The experiments have been interpreted
with phenomenological models, but a microscopic theory
would provide a more in-depth understanding. The purpose
of this Letter is to formulate a general microscopic theory
of the nonlinear optical susceptibility of a quantum well
which carries a population of electron-spin-coherent ex-
citons. Valid in linear order in both the pumped exciton
density and probe field amplitude, the theory clarifies the
physics of time-resolved DT and FR spin beats at the low
density limit.

Microscopic theories have been extensively developed
for the nonlinear response of quantum wells in the ultrafast
(� several ps) regime. In conjunction with significant
experimental efforts, these theories have established
exciton-exciton interactions as the primary mechanism

driving nonlinear optical effects (for recent reviews, see,
e.g., [10–12]). In particular, the microscopic processes
underlying exciton-spin beats in FR signals in this regime
have been discussed [13,14]. But so far a microscopic
theory of the nonlinear optics of optically dephased,
electron-spin-coherent excitons on the 100 ps time scale
is still absent.
We consider specifically the experimental configuration

sketched in Fig. 1(a). A circularly polarized, say, � ¼ þ,
pump pulse propagating at normal incidence (along the z
axis) and spectrally close to the lowest heavy hole exciton
resonance creates an interband polarization in a quantum
well at low ambient temperature, e.g., 10 K. Within a time
scale �R (<50 ps in GaAs at 10 K) after the pumping, the
interband polarization partially reradiates and partially
dephases and relaxes to yield a population of incoherent
heavy hole excitons with a distribution of center-of-mass
momentum. The hole spin inside a pumped exciton (ini-
tially jz ¼ 3=2, corresponding to the absence of a valence

FIG. 1 (color online). (a) Sketch of the Voigt geometry with
normal incidence light and a magnetic field B in the quantum
well plane. (b) Optical selection rules in the z basis. The B-field
induced coherence between the electron states in the z basis is
indicated. (c) Optical selection rules using the z basis for the
valence band orbitals and x basis (eigenstates of magnetic field
Hamiltonian) for the conduction band electrons.
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electron of spin jz ¼ �3=2) decoheres also within �R,
while the electron-spin state (sz ¼ �1=2 initially) stays
pure for a long time, e.g., typically hundreds of ps in GaAs
quantum wells. A magnetic field applied along an axis (the
x axis) in the plane of the quantum well splits the two
degenerate electron-spin states quantized along the x axis
[Fig. 1(c)] and, in the case at hand, drives a coherent
oscillation of spin population between the two electron-
spin states quantized along the z axis [Fig. 1(b)]: with the
electron created in sz ¼ �1=2, the electron-spin density
matrix in the z-axis basis is

�̂ s
zðtÞ ¼ 1

2

½1þ cos�ðt� tpuÞ� i sin�ðt� tpuÞ
�i sin�ðt� tpuÞ ½1� cos�ðt� tpuÞ�

� �
;

(1)

where @� is the Zeeman splitting and tpu is the pump time.

Many properties of the exciton population can be de-

scribed by the one-exciton density matrix hpsjy
q ðtÞps0j0

q0 ðtÞi
where psj

q is the second quantized annihilation operator for

a 1s heavy hole exciton with electron-spin s quantized
along the ẑ-axis, hole orbital j, and center-of-mass in-plane
momentum q (all momenta in this Letter lie in the quantum
well’s plane), and h�i denotes an expectation value in a
many-exciton state. For times larger than �R, when the
state has decohered with respect to hole spin and momen-
tum, the one-exciton density matrix can to a good approxi-
mation be written as an uncorrelated product of matrices in

the three state labels: hpsjy
q ðtÞps0j0

q0 ðtÞi ¼ ½�̂s
z�ss0 ð�jj0=2Þ �

�qq0fðqÞ, where fðqÞ is the slowly evolving momentum

distribution. The relaxation dynamics of fðqÞ has previ-
ously been investigated [15]. Based on its findings, we use
a model distribution, shown in Fig. 2(e), which is thermal
except for a radiative loss correction at low momenta.

Microscopic many-particle theory comes into play when
we try to understand the measurement and manipulation of
the electron-spin coherence of the exciton population.
Suppose a probe pulse E�ðtÞ, circularly polarized (� ¼

þ or�) and centered spectrally at ! and temporally at tpr,

is sent in to measure this coherence. It does so by inducing
a 1s heavy hole interband polarization which scatters off
the existing electron-spin coherent exciton population. We
use real-time Green’s functions and diagrammatic pertur-
bation methods (for an account of this formalism see, e.g.,
[16]) to derive equations of motion for the probe-induced
interband polarization in increasing orders of the probe
intensity and the preexcited exciton density. These equa-
tions are derived with electrons and holes as degrees of
freedom. They are then expanded in an exciton basis and
restricted to the heavy hole 1s subspace. The resulting
equations—our working equations—are driven by various
exciton scattering processes and Pauli blocking. (Pauli
blocking turns out to be relatively unimportant here.)
We illustrate the lowest order scattering processes in
Figs. 2(a)–2(d), showing the various electron-spin (in the
ẑ basis) combinations explicitly for a (� ¼ þ ) s ¼
�1=2, j ¼ 3=2) probe. In each diagram, the line starting
with a cross denotes the 1s interband polarization created
by the probe pulse, and the open line a propagating exciton
that recombines to give the signal photon. The internal line
represents a two-time correlation function of the pumped

exciton population hpsjy
q ðtÞps0j0

q0 ðt0Þi ¼ hpsjy
q ðtÞps0j0

q0 ðtÞi�
exp½i!qðt� t0Þ�, where the signs of the electron-spin s

and s0 are marked at the line’s two ends, and @!q is the

energy of the exciton with momentum q. The scattering
matrix [17], or T matrix (box labeled T), is a ladder sum of
repeated exciton interactions to all orders. It preserves the
hole spins of the scattering excitons individually but allows
exchange of electron spins. These (electron and hole) spin
conservation rules restrict the contributing electron-spin
configurations to those included in Fig. 2, which shows
that only the diagonal elements of the electron-spin density
matrix, ½�̂s

z��1=2;�1=2 and ½�̂s
z�1=2;1=2, are probed.

The susceptibility for the �-(circularly)polarized com-
ponent of the probe is given by�� � R

dtp�ðtÞE�
�ðtÞwhere

p�ðtÞ is the probe-induced interband polarization. The
susceptibility depends parametrically on the pump-probe
delay time � ¼ tpr � tpu and the probe pulse’s center fre-

quency !: �� ¼ ��ð!; �Þ. It gives the time-resolved
FR of an x-polarized probe and the DT of a �-polarized
probe as [14] �ð!; �Þ � Re½��ð!; �Þ � �þð!; �Þ� and
�T�ð!; �Þ � �Im½��ð!; �Þ�, respectively. We have calcu-
lated the susceptibility to linear order in the pump-induced

density. Called the third order susceptibility �ð3Þ
� ð!; �Þ, it

can be written in the form

�ð3Þ
� ð!; �Þ ¼ Cð!Þ �Dspinð!Þ cos��: (2)

The response signals are similarly parametrized: �ð!; �Þ ¼
A�ð!Þ cos��, �T�ð!; �Þ ¼ Að!Þ � AT cos��, with the
amplitudes given by A�ð!Þ � �ReDspinð!Þ, ATð!Þ �
�ImDspinð!Þ, and Að!Þ � �ReCð!Þ. The probe pulses

we use have durations of several ps, which are long com-
pared to the scattering duration (typically <1 ps in GaAs)

FIG. 2. (a)–(d) Diagrams representing the excitonic scattering
contributions to the third order interband polarization. The
electron-spin states (þ or �) of the incoming and outgoing
excitons of each scattering event in the case of a (þ)-polarized
probe are marked. See text for the meanings of diagram parts.
(e) A model momentum distribution of the relaxed excitons.
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but short compared to the spin beat period (�70 ps, cor-
responding to @� 	 0:06 meV, in the cited experiments).
It is then instructive to approximately treat the probe pulse
as a continuous wave in the scattering calculation and the
oscillating electron-spin population as frozen within the

duration of pð3Þ
� ðtÞ. Solving the pð3Þ

� equation in this ap-
proximation, we obtain the !-dependent coefficients of

�ð3Þ
� as [18]

Cð!Þ � �X
q

fðqÞ
½Lð!Þ�2

�
Tþþ
q=2;q=2ð�q;qÞ þ Tþþ

q=2;�q=2ð�q;qÞ

þ Tþ�
q=2;q=2ð�q;qÞ � 1

2
Tþ�
q=2;�q=2ð�q;qÞ

� ½ ~APSF
e ðqÞ þ ~APSF

h ðqÞ�Lð!Þ
�
; (3)

Dspinð!Þ��X
q

fðqÞ
½Lð!Þ�2

�
Tþþ
q=2;q=2ð�q;qÞ�Tþ�

q=2;q=2ð�q;qÞ

þ 1

2
Tþ�
q=2;�q=2ð�q;qÞ� ~APSF

e ðqÞLð!Þ
�
: (4)

Here T��0
kfki

ð�;QÞ denotes a two-exciton scattering (or

T-matrix) element [17] between an incoming state with
relative momentum ki and an outgoing state with relative
momentum kf, and @� and Q are the conserved total

energy and momentum, respectively. For easier interpreta-
tion, we have chosen to parametrize the spin dependence of
the T-matrix elements in the same way as in the coherent
regime: Tþþ(¼ T��) and Tþ�(¼ T�þ) are, respectively,
the T matrices for copolarized and counterpolarized ex-
citons. For each process both the incoming and outgoing
states contain a virtual (probe) exciton with zero momen-
tum and energy @! and a real (pump) exciton with mo-
mentum q and energy @!q ¼ "x þ @

2q2=ð2MxÞ, Mx being

the exciton’s mass. These give a total energy of�q ¼ !þ
!q and a total momentum of q. Lð!Þ ¼ @!� "x þ i�

where � is the linewidth of the exciton resonance. The
phase space filling (PSF) factors are given in terms of the
momentum space 1s exciton wave function �ðkÞ by
~APSF
	 ðqÞ ¼ P

k�ðkÞj�ðk	Þj2=
P

k�ðkÞ, where k	 ¼
k� ðm	=MxÞq, with 	 ¼ e, h. The T-matrix elements
are calculated by diagonalization of the two-exciton
Hamiltonian as explained in [17].

Equation (2) shows a simple dependency to pump-probe
polarization configurations: the copolarized (þ pump and
þ probe) and counterpolarized (þ�) response signals
share a common �-independent part but have 180
-out-
of-phase spin beat parts. At the same time, Eqs. (3) and (4)
show that, even for the copolarized configuration, say, both
Tþþ and Tþ� contribute. In particular, biexciton forma-
tion, present in Tþ�, plays a part in the copolarized chan-
nel response. Moreover, Eq. (2) shows that the nonbeat part
of the FR of a linearly polarized probe vanishes. These
properties follow from our assumption of hole spin ther-
malization, which produces all four exciton (sz, jz) spin
states in the relaxed exciton population even though the

pump is circularly polarized. These polarization dependen-

cies are in obvious contrast to those of the �ð3Þ suscepti-
bility in ultrafast pump-probe spectroscopy (e.g., [19]),

where T��0
contributes only in the matching (��0)

pump-probe polarization channel, yielding distinctly dif-
ferent responses in the (þþ) and (þ�) pump-probe
configurations [20]. The combinations of T-matrix ele-
ments in Eqs. (2)–(4) result from superposition of contri-
butions from the processes in Fig. 2. Leaving out common

factors, the four diagrams’ contributions to �ð3Þ
þ are pro-

portional to (a) ð1þ cos��ÞTþþ
q=2;q=2, (b) ð1�

cos��ÞTþ�
q=2;q=2, (c) ð1þ cos��ÞTþþ

q=2;�q=2=2, (d) ð1�
cos��ÞðTþþ

q=2;�q=2 � Tþ�
q=2;�q=2Þ=2 [21].

We have calculated Cð!Þ and Dspinð!Þ for the exciton

momentum distribution shown in Fig. 2(e), with an exciton
linewidth of � ¼ 0:35 meV and a biexciton dephasing of

2�. In our calculation, the pð3Þ
� ðtÞ equation is solved with 4-

ps probe pulses, i.e., without assuming the probe to be a
continuous wave. The effect of the ‘‘continuous-wave’’
approximation is, however, small so that Eqs. (3) and (4)
can be used to interpret the numerical results. Figure 3
shows (a) the spin beat amplitude ATð!Þ of the DT of a
(þ)-polarized (copolarized with the pump) probe, (b) the
beat amplitude A�ð!Þ of the FR of a linearly polarized
probe, and (c) the nonbeat part Að!Þ of the DT. The
signals’ spectral behaviors are basically products of those
of the T-matrix elements and one-exciton Lorentzians
½Lð!Þ��2. The spectra of our finite-q T matrix here are
qualitatively similar to those of the zero-q T matrix for
ultrafast nonlinear optics discussed in [17]. A prominent
feature in Fig. 3 is the considerably larger magnitude of the

FIG. 3. (a) and (b) The (signed) amplitudes of the electron-spin
beat signals of a GaAs quantum well as a function of probe
frequency for a (þ)-polarized pump: (a) DT of a (þ)-polarized
probe and (b) FR of a linearly polarized probe. (c) The nonbeat
part of the DT. Also shown is the breakdown of each signal into
its components: phase space filling (dashed line), exciton scat-
terings Tþþ (dotted line), and Tþ� (dash-dotted line).

PRL 103, 056405 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
31 JULY 2009

056405-3



nonbeat part of the DT signal compared to AT and A�. This
can be understood from the breakdown into contributions
from various processes, also shown in the figure. For the
spin beat amplitudes, the contributions from Tþþ (dotted
lines) and Tþ� (dash-dotted lines) largely counteract each
other, especially near the exciton resonance (@! 	 "x).
This effect can be expected from the opposite signs with
which the two contributions appear in Eq. (4) for Dspinð!Þ.
In contrast, as seen from Eq. (3), Tþþ and Tþ� tend to
reinforce each other in Cð!Þ, which also contains an extra
Tþþ
q=2;�q=2.

The smallness of AT relative to the nonbeating part of
the DT signal is in accord with experimental measurements
of DT, especially around zero probe detuning [6,7]. The
relative phase (¼180
) between the beats in the DT in the
two pump-probe polarization configurations is also con-
firmed [22]. The ! dependence of A� shown in Fig. 3 also
agrees qualitatively with measurements [7]. We note that
our theory is essentially parameter free (the input parame-
ters being the electron and hole masses, the background
dielectric constant, and environmental dephasings) with a
model of a zero-width quantum well with two bands.
Bearing this model’s limitations in mind, we think the
general agreement between our predictions and experi-
ments is sufficient to validate the physical points of our
theory. More accurate modeling of the experimental
samples, such as including effects of a finite well width
and the light hole band, will be done in the future. To get a
rough sense of how these modeling advances might change
our results, we have repeated our calculations, artificially
varying the biexciton energy and strength from their calcu-
lated values. These biexciton characteristics are known to
depend quite sensitively on the well width. From Fig. 4,
one can see the qualitative features of our theory are robust,

but improved sample modeling would be needed for pre-
cise predictions.
In summary, we have formulated a microscopic theory,

based on exciton interactions, for the electron-spin beat
components of differential transmission and Faraday rota-
tion signals of quantum wells carrying a population of
dephased, but electron-spin-coherent excitons. This theory
explains the basic features of recent experimental results at
the limit of low pump-induced density and low probe
intensity. The theory will be generalized to higher orders
in the probe intensity and to three-pulse configurations [9].
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