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 1 Introduction and brief review The issue of opti-
cal instabilities driven by four-wave mixing (FWM) pro-
cesses has been investigated for many decades (see, for ex-
ample, Refs. [1–5]). 
 In gaseous atomic or molecular systems and simple 
Kerr media, FWM processes can lead, among other things, 
to transverse optical instabilities. The interest in these 
FWM instabilities has recently been renewed by the dem-
onstration of their effectiveness for all-optical switching at 
very low light intensities [6, 7]. The question naturally 
arises whether analogs of the atomic FWM instabilities can 
be expected in semiconductor systems, notably in quantum 
well structures. And if so, what are the underlying physical 
mechanisms that could drive those instabilities in semicon-
ductors. 
 First, we briefly review our recent work in this area, 
which includes single semiconductor quantum wells 
(QWs) [8], Bragg-spaced multiple quantum wells [9], and 
planar semiconductor microcavities [10–13]. Instead of 
studying spontaneous off-axis pattern formation induced 
by these instabilities, we investigated mainly their role in a 
pump–probe setup as illustrated in Fig. 1. We found that 

the FWM instabilities can lead to large gain in the probe 
and (background-free) FWM directions that grows expo-
nentially with the pump pulse duration, limited by the 
eventual buildup of incoherent exciton/biexciton densities. 
 In our work on single QWs we showed, on the basis of 
a microscopic many-particle analysis rooted in a fermionic 
description of the excited semiconductor, that FWM insta-
bilities can occur via nonlinear excitonic processes. In sin-
gle QWs, we found that FWM instabilities are most likely 
to be driven by biexcitonic correlations [8]. However, the 
question is often asked whether phase-space filling (PSF) 
effects (which are similar to the nonlinearities found in 
atomic systems), can – at least in principle – lead to insta-
bilities in single QWs. In this contribution, we address this 
issue and argue that PSF can indeed lead to instabilities in 
theory, but the parameter regime in which we find such an 
effect cannot be considered a realistic option for these in-
stabilities to occur in practice. Nevertheless, the analysis of 
the purely theoretical PSF instability elucidates an impor-
tant aspect of FWM instabilities, namely the benefits asso-
ciated with a pump-induced shift (here: Stark shift) of  
the resonance towards the pump-light frequency. We will  
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Figure 1 Illustration of the investigated pump–probe setup, in-

cluding incoming and transmitted light pulses (reflected pulses 

are omitted for clarity) for probe, pump, and FWM direction (the 

angle between the different propagation directions is strongly ex-

aggerated). Selected contributions to the probe and FWM polari-

zations are schematically included in the figure. The numbers in 

parentheses indicate the lowest order in the external fields in 

which they appear. 
 
show that the Stark shift combined with spatial exciton 
dispersion can lead to FWM instabilities. For the biexci-
ton-driven instabilities our earlier investigations have 
shown that the materials conditions for observing them are 
more realistic than the PSF instabilities. Admittedly, they 
are still rather stringent, but it appears that high-quality 
QW samples [14] might allow for a future experimental 
verification of our predictions. 
 We have also investigated FWM instabilities in planar 
semiconductor microcavities and Bragg-spaced multiple 
semiconductor quantum wells. Bragg-spaced multiple 
quantum wells are examples of resonant one-dimensional 
photonic crystals. Here, the exciton resonance is spectrally 
inside the photonic bandgap (see, for example, [15–20]). 
We predicted FWM instabilities in these structures [9], but 
in contrast to single QWs, we found that the dominant in-
stability here is driven by Hartree–Fock (HF) mean-field 
Coulomb effects. The HF mean-field effect has been found 
earlier to dominate stimulated polariton scattering and re-
lated instabilities in planar semiconductor microcavities 
(see, for example, [21–26]). But two-exciton correlations 
beyond the HF levels have also been found to be important, 
and in our work [10, 11] we focused on tracing the  
instabilities and corresponding polariton-polariton interac-
tions to the underlying excitonic correlation functions  
(T-matrices), which, in turn, are based on a fermionic the-
ory. Finally, we mention that we have shown that the idea 
of an all-optical switch driven by FWM instabilities can be 
realized in semiconductor microcavities [12, 13]. In the 
following, we will restrict ourselves to PSF-driven insta-
bilities in single QWs.  
 
 2 Theoretical basis In our theoretical approach to 
FWM instabilities, we investigate a pump–probe setup as 
illustrated in Fig. 1 with the light propagating in quasi-
normal incidence and with all optical pulses spectrally cen-
tered near the 1s heavy-hole (hh) exciton resonance. As-
suming all other resonances to be sufficiently far away, the 
coherent response of the system in the lowest-order 
nonlinear regime 

(3)(χ -regime) has been well studied. We 

focus our analysis on small pump intensities where the 
many-particle effects listed above are dominant for the co-
herent optical QW response (i.e., we neglect higher than 
four-fermion or two-exciton correlations). The influence of 
higher-order correlations and incoherent exciton contribu-
tions is discussed later in our analysis. We start from the 
nonlinear equation for the optically induced interband po-
larization p

±
 ( +, -  label the circular polarization states) 

and perform a spatial Fourier decomposition of p
±
 and the 

exciting field E
±
 with respect to the in-plane wave vector k. 

We label the Fourier components with the subscripts s, f 
and p for probe (also called signal, with 

s
,k k=  assumed to 

be small but nonzero), background-free FWM 
s

( ),k k= -  
and pump ( 0)k =  direction, respectively. The resulting 
equations are linearized in the weak probe field 

s
E

±
 but 

solved self-consistently in the pump field 
p

E
±
 [27, 28]. The 

equations for 
±

s,fp  read: 

s,f s,f( )
x

i p i p
t

ε γ�
± ±∂
= -

∂
 

 
PSF 2

1s p cv s,f[ (0) 2 | | ]A p d Eϕ
± ±*

- -  

 
PSF ±

cv s,f p p f,s p p2 [ ]d A p p E p p E± ± ± ± ±* *
+ +  

 Coulomb terms .+  (1) 

The “Coulomb terms” are given in Ref. [8]; they are omit-
ted here because in the following we discuss only the PSF 
terms. (We note that PSF contributions and the Coulomb 
terms, derived here from a microscopic theory [29] can be 
related to simple few-level models as outlined in 
Ref. [30].) The nonlinear pump equation for 

p
p
±

 (not 
shown) involves the same nonlinear processes. We note 
that the solution to Eq. (1) goes beyond the 

(3)
χ -limit and 

includes the pump polarization up to arbitrary order. Here, 

x
ε  is the 1s–hh exciton energy, γ  a phenomenological ex-
citonic dephasing constant (not including the radiative de-
cay), 

cv
d  the interband dipole matrix element, 

1s
( )ϕ r  the 

two-dimensional exciton wavefunction (in the following 
assumed to be real and positive), and 

PSF
A  the excitonic 

PSF constant. The propagation of the optical field E
±
 

across the QW is described with a transfer-matrix method 
accounting for radiative corrections/decay and assuming 
the QW to be infinitely thin (e.g., Ref. [31]). 
 Within the framework of a linear stability analysis, we 
re-write the homogenous part of Eq. (1) in the form of a 
linear matrix equation. For steady-state pump excitation 

p

p p
( ( ) e

i t

p t p
ω

�

-

=  with 
p

0),p
�

� =  we use the ansatz 
p

s,f s,f
( ) ( ) e .

i t

p t tp
ω

�

-

=  We then arrive at the general form 

d
( ) ( ) ,

d
t M t

t
� �=p p  (2) 

with the vector of polarization components1 

s f s f
( ) [ ( ) ( ) ( ) ( )] ,T
t t t p t p tp p� � �� �

- -+ + **
= , , ,p  (3) 

 
1 In Ref. [8], this vector also contains elements describing the 

contribution of bound biexcitons, which is important for the correct 

analysis of biexciton-driven FWM instabilities. 
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where the matrix M  follows from Eq. (1). If at least one of 
the eigenvalues 

i
λ  of M  fulfills Re{ } 0,

i
λ >  the system is 

unstable. An arbitrarily small seed of s,fp
±

 would grow ex-
ponentially, until the matrix M  ceases to describe the sys-
tem correctly.  
 

 3 Discussion Equation (1) and the corresponding ma-
trix Eq. (2) are the basic ingredients of our recent instabil-
ity studies of single quantum wells [8], Bragg-spaced 
quantum wells [9] and microcavities [10–12]. In the fol-
lowing, we illustrate the linear stability analysis of a single 
QW for the simple case of PSF nonlinearites, in other 
words we neglect the Coulomb terms in Eq. (1). The sec-
ond term in the third line is the one describing the feedback 
between the signal and FWM polarizations. It is this feed-
back that is necessary for an instability to occur. In the lit-
erature, this term in the equation is often labelled ‘phase-
conjugate oscillation’ (PCO) term. Since the PSF-PCO 
terms do not couple the two circular polarization compo-
nents, we can restrict ourselves to, say, the “+” polarized 
fields, 

s f
( ) [ ( ) ( )] .Tt t p tp� ��

++ *
= ,p  Neglecting also radiative de-

cay, the matrix M  reduces to 

,
* *

a b
M

b a
�

Ê ˆ
Á ˜
Á ˜
Á ˜Ë ¯

=  (4) 

with 
PSF( )a iγ Δ ε= - + -  with 

p
,

x
Δ ω ε�= -  

PSF PSF

cv pp
2A d p Eε ��

+ +*
=  and PSF

cv pp
2 .b i A d p E��

+ +

= -  We denote 
the nonlinear terms in the diagonal matrix elements “self-
wave mixing” (SWM) terms, as they do not couple the sig-
nal and FWM polarizations. The off-diagonal elements we 
call PCO terms. First, it is easy to see that, if we had only 
the PCO terms, we would predict instabilities for all pump 
parameters, as one of the two eigenvalues 

2| |bλ
±
= ±  is 

positive real. However, the situation is quite different if we 
include the diagonal matrix elements in the analysis. Now, 

the eigenvalues are 2 2Re ( ) | | ( ).Ima b aλ
±
= ± -  Clearly, 

instability requires the square root to have a real part that 
can overcompensate the dephasing (γ ) and power broaden-
ing 

PSF(Im ( ))ε  included in Re ( ).a  
 Let us first discuss a “best-case scenario” in which 
there is no dephasing and power broadening,  
i.e. Re ( ) 0.a =  We can get an analytical prediction for  
the instability if we treat the pump polarization stationary  
and in first order in the pump amplitude, 1sp

(0)p ϕ�

+

= -  

cv p
( ).d iE Δ γ�

+

¥ / +  Defining the exciton density 
2

p
| |

x
n p�∫ , 

we find 
2 2| | Im ( )b a-  2 PSF

1s
(1 4 / (0)) 0.

x
A nΔ ϕ= - + <  Hence, 

the square root is purely imaginary and there is no instabil- 
ity. 
 We can rationalize this result by noting that the Stark 
shift, which is part of the diagonal matrix elements a and 
given by 

PSFRe ( ),ε-  shifts the exciton resonance away 
from the light field frequency, and therefore increases the 
effective detuning. To confirm the analytical finding of the 
absence of PSF instabilities, which was based on a first-
order  evaluation  of  

p
,p�  we  show  in Fig. 2  a  numerical  

 

Figure 2 (online colour at: www.pss-b.com) Linear stability 

analysis for a circularly polarized pump for steady-state total co-

herent exciton density 
total 11 2

1 7 10 cm
x

n
-

= . ¥  and without in-plane 

exciton dispersion. Shown are the real parts of the eigenvalues 
i

λ  

of the matrix M  vs. pump detuning. The dotted line separates the 

stable (Re{ } 0)λ <  from the unstable (Re{ } 0)λ >  regime. 

 

solution2 of the detuning dependence of the eigenvalues 
obtained with the stationary solution of the nonlinear pump 
equation. For all detunings, we adjust the pump intensity 
such that the exciton density 

x
n  is 

11 2
1 7 10 cm .

-

. ¥  We 
chose this rather unrealistically high density to illustrate the 
point that PSF without in-plane excition dispersion does 
not yield instabilities (which can be seen from Fig. 2, be-
cause the real parts of all the eigenvalues are negative), 
whereas inclusion of spatial dispersion does yield instabili-
ties in principle. However, as will be discussed in the fol-
lowing, even with spatial dispersion we had to choose the 
high (unrealistic) density in order to obtain positive eigen-
values. 
 One feature of spatial dispersion (i.e. 

x
ε  entering the 

pump equation is different from that entering the signal 
and FWM equations) that facilitates instabilities is the fact 
that the Stark effect can actually shift the exciton into reso-
nance with the light field. This is illustrated in Fig. 3. At a 
finite incidence angle, which is equivalent to a finite  
in-plane wave vector, the signal has  generally  a  different  
 

 

Figure 3 (online colour at: www.pss-b.com) Sketch of the in-

plane exciton dispersion (solid line: unshifted, dashed line: Stark 

shifted). For the indicated pump frequency and in-plane signal 

wave vector, the Stark-shifted dispersion is in resonance with the 

light frequency. 

 
2
 Parameters: 1 4965 eV,

x
ε = .  4 eÅ,

cv
d =  0 01meV,γ = .   

2
 

PSF

0
4 2π 7,

x

A a= /  with 
0

170 Å,
x

a ª  13 meV.
x

b
E ª  
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Figure 4 (online colour at: www.pss-b.com) Same as Fig. 2, but 

including spatial in-plane dispersion of the exciton resonance. 

 
detuning from the exciton resonance than the normal-inci-
dence pump. However, the Stark shifted exciton can be in 
resonance with the signal beam, as shown in the figure. For 
this case, we have performed a linear stability analysis, and 
the results are shown in Fig. 4. We show the case of no-
dispersion as well as two different in-plane wavevectors of 
the signal. Here, 

max
k  is the maximum in-plane vector for 

the given frequency. Clearly, we find a region of positive 
eigenvalues (i.e. instabilities) for the case of 

s max
0 75 ,k k= .  

which indicates that spatial dispersion is indeed beneficial 
for the PSF-driven instability. However, we stress again 
that this calculation is only meant to elucidate the interplay 
of light-induced energy shifts and FWM instabilities; it is 
not meant to predict PSF-driven instabilities in single QWs 
in actual experiments.  
 
 4 Conclusion We have briefly discussed FWM insta-
bilties in semiconductor quantum well systems. We have 
restricted the detailed discussion to instabilities driven by 
phase-space filling effects in single QWs. We have found 
PSF-driven instabilities to be unrealistic and in principle 
possible only if spatial in-plane dispersion of excitons is 
taken into account. While not necessarily realistic, the 
PSF-driven instabilities in single QWs illustrate the bene-
fits from optically-induced exciton shifts toward the fre-
quency of the pump pulse. 
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