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Abstract We review recent theoretical and experimental ef-
forts toward developing an all-optical switch based on trans-
verse optical patterns. Transverse optical patterns are formed
when counterpropagating laser beams interact with a nonlinear
medium. A perturbation, in the form of a weak switch beam
injected into the nonlinear medium, controls the orientation of
the generated patterns. Each state of the pattern orientation is
associated with a state of the switch. That is, information is
stored in the orientation state. A realization of this switch using
a warm rubidium vapor shows that it can be actuated by as few
as 600 =40 photons with a response time of 5 pus. Models of non-
linear optical interactions in semiconductor quantum wells and
microresonators suggest these systems are also suitable for use
as fast all-optical switches using this same conceptual design,
albeit at higher switching powers.

A pair of counterpropagating beams induce an instability that
generates transverse optical patterns. (A) Two spots form the
unperturbed far-field pattern. (B) A weak beam incident at an
angle to the pump beam axis causes the generated pattern to
rotate. From [1].
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1. Introduction

In the past decade, the rapid bandwidth increase in commu-
nication networks has been enabled by advances in opto-
electronic technology. However, bandwidth improvements
cannot continue indefinitely as opto-electronic devices face
thermal dissipation limits that are fundamental to process-
ing information in the electronic domain [2]. Photonics
offers a wide range of novel information processing tech-

nologies with the potential for much greater bandwidth.
In particular, devices that process information in the op-
tical domain can operate on parallel channels, with high
bandwidth, and with markedly higher information density.

To process information all-optically, beams of light
must interact with one another, which can only occur in
nonlinear media. Optical nonlinearities are typically weak,
requiring high intensities in order to generate significant
effects. A current goal in the field of nonlinear optics is
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to reduce the power required for nonlinear interactions.
One application of nonlinear optics is the development of
efficient telecommunications devices where strong non-
linearities reduce device power requirements. In addition,
there is a need to operate devices at the ultimate, single-
photon level. Few-photon or ultra-low-light nonlinear op-
tics has many potential applications in quantum information
science [3]. Several recent experiments in the photonics
field have demonstrated ultra-low-light nonlinear optical
effects using various techniques including high-finesse cav-
ities [4, 5], plasmonic nanostructures [6], and quantum-
interference effects such as electromagnetically-induced
transparency [7-10].

These approaches each achieve remarkable sensitiv-
ity; however, as we explain below, they do not necessarily
satisfy the requirements for use as a scalable all-optical
network element. Another approach, one that is the sub-
ject of this review, is based on the control of transverse
patterns generated by nonlinear optical interactions. This
pattern-based approach achieves a level of sensitivity that
is comparable to other methods in addition to satisfying the
requirements of scalability.

This review describes recent progress in the field of non-
linear optics that has demonstrated all-optical switches that
are capable of controlling one beam of light with another.
These devices exploit the inherent sensitivity of pattern-
forming instabilities to weak perturbations and are based
on transverse optical patterns that change orientation in the
presence of a weak control beam, or swifch beam. This arti-
cle is designed as a review, but also contains relevant results
from our recent work. The review is arranged as follows.
The next section introduces the concepts of nonlinear pat-
tern formation and provides context for the application of
pattern-forming systems to problems in optical switching.
Sect. 3 describes various approaches to all-optical switch-
ing, and introduces common metrics for comparing differ-
ent devices. Sect. 4 summarizes recent experimental results
using an all-optical switch based on transverse optical pat-
terns that are formed in a counterpropagating-beam system.
The data presented in Sect. 4 is new and shows a marked
improvement in comparison to the results that were re-
ported previously [11]. The improvement was achieved by
a careful optimization of the experimental system. Sect. 5
presents new numerical results obtained by simulating the
interaction of Gaussian beams counterpropagating through
a medium that exhibits Kerr-like nonlinearity. In Sect. 6,
we describe recent results based on simulations of a related
system where beams counterpropagate in a semiconductor
medium which exhibits excitonic nonlinearities. Finally, a
discussion of future directions is given in Sect. 7.

2. Pattern formation

The emergence of regular structure from natural processes
has been observed throughout history. Found in nearly ev-
ery field of science, patterns are one of the most recog-
nizable signatures of a nonlinear dynamical system. The

mathematical tools developed in the field of dynamics have
been used successfully to describe a wide range of pat-
tern forming systems in biology, chemistry, and computer
science [12,13].

The quantitative description of pattern formation re-
quires a study of the system dynamics and their stability
relative to perturbations. For spatially extended systems, the
stability of the Fourier modes of the system are of interest.
Hence, if infinitesimal perturbations applied to a specific
mode grow as the system evolves, that mode can give rise
to an instability. Instabilities such as this are responsible for
pattern formation in systems with two or more dimensions.

The term pattern selection refers to the tendency of
the system to exhibit patterns with a certain symmetry or
orientation. Understanding the pattern selection process is
of fundamental importance to understanding the patterns
observed in the system. Many patterns are allowable solu-
tions to the dynamics equations of the system, yet only a
subset of the allowed patterns are typically exhibited. Pat-
terns are selected both by constraints on the system and by
the dynamics of the system. The optical patterns that are
the subject of this review exhibit pattern selection by both
mechanisms, although primarily via the system dynamics,
in particular through external forcing [12].

Given a specific system, and thus specific allowed solu-
tions, control of the generated patterns is limited to choos-
ing from among these solutions. Hence, it is through con-
trolling pattern selection that one can control the pattern
generated by a system. Attempting to control the sponta-
neous patterns formed by nonlinear processes is not an
intrinsically new idea. In fact, attempts to control many as-
pects of nature (i.e., weather, ocean currents, tides, and
wind) are simply attempts to control the patterns that
arise from nature’s fundamental processes. There are, how-
ever, new applications for controllable pattern-formation,
and one such application—controlling the flow of optical
information—is described in the remainder of this review.

3. All-optical switching

An all-optical switch is a device that allows the control
of one beam of light with another. Two fundamental prop-
erties of a switch are that the device exhibit at least two
distinguishable states, and that the device input and output
are distinguishable. There are many possible configurations
where the switch can change the output power, direction, or
state of polarization of a beam of light that is either prop-
agating through a nonlinear medium or generated within
the medium.

One simple all-optical switch that has been demon-
strated in a wide variety of materials is based on the
intensity-dependent refractive index of transparent non-
linear optical media. The intensity-dependent refractive
index leads to a nonlinear phase shift experienced by a
wave propagating through the medium. This effect allows
light-by-light control if such a medium is inserted in one
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arm of an interferometer [14]. The output state of the inter-
ferometer could then be controlled by changing the phase
shift experienced by one beam, i.e., by changing the optical
path length of one arm of the interferometer. The phase
shift depends on the total optical intensity incident on the
nonlinear material, so, if a strong control field is applied,
and assuming the signal field is weak Igzna < I, the
nonlinear phase shift is given by

w
¢111 = QEnZIcLa (1)

where w is the angular frequency, c is the speed of light in
vacuum, L is the length of the medium, n- is the nonlinear
index of refraction, and I. is the intensity of the control
field. For high-contrast switching, the control beam must
be of sufficient strength to cause a significant change in the
phase of the signal beam, ¢, ~ 7.

A second type of all-optical switch relies on the proper-
ties of a saturable absorber. The absorption experienced by
a wave propagating through a homogeneously-broadened
medium that exhibits saturable absorption depends on the
intensity, and decreases for increasing intensity following
the relation [14]

Qg
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o
where aq is the absorption coefficient experienced by a
weak field and I, is the saturation intensity.

In order to realize a switch based on saturable absorp-
tion, a strong control beam and a weak signal beam co-
propagate through a material that exhibits saturable ab-
sorption. The control beam, in this case, must be of suffi-
cient intensity to saturate the atomic response. Saturation
of a two-level system corresponds to moving a significant
amount of the atomic population from the ground state to
the excited state. In order to maintain population in the
excited state, one photon must be incident on each atom per
excited state lifetime. Quantitatively, this condition is [15]

I= Iy = fio ; 3

OTsp

where 7y, is the excited state lifetime, /w is the photon
energy, and o is the atomic cross section. Eq. (3) must be
modified for the case of a material undergoing optical pump-
ing where the population is redistributed in time 7,. Hence,
to maintain saturation, one photon must be incident on
each atom per 7, i.e., the relevant time scale is instead the
ground-state lifetime 7,. For a pair of isolated levels driven
by resonant light, without collisional or Doppler broaden-
ing, the cross section has a maximum value of [14,15]

32
Omax = o’ 4
™

where ) is the wavelength of incident light.

As an example, a cloud of cold-trapped rubidium atoms
contained in a magneto-optic trap (MOT) satisfies the re-
quirements for maximizing o. The saturation intensity

I.. = 3mW/cm? for Tep = 25ns and A = 780nm.
Thus, for a beam with radius 2 mm, an optical power of
0.4 mW is required to actuate a saturation-based switch us-
ing such a Rb-MOT medium. Of course, one limitation of
the saturation-based switch is that the switching beam must
be weak relative to the saturation intensity. In the MOT
case described here, the saturation intensity corresponds
to a 2 mm diameter beam with a power of Py, = 80 uW,
hence the power of the signal beam (the beam being turned
on or off) must be much lower, Fyjgnal < Fear = 80 uW.
Therefore, in the MOT example, the maximum allowed
signal Pyigna < 80uW is significantly weaker that the
required switch beam power, which is equal to 0.4 mW.

To establish a convenient metric for comparing differ-
ent all-optical switches having different geometries, we
quantify the energy density of the control field in units of
photons per A2 /(2x) [8]. In principle, a larger device that
operates at n photons per A\?/(27) can be scaled to have
transverse dimension equal to the diffraction limit (A?) and
operate with only n photons. The relationship between the
saturation intensity and o, 1S such that an energy density
that corresponds to approximately one photon per A% /(27)
is sufficient to saturate a two-level transition. Of course, en-
ergy of this density must be applied for at least the lifetime
of the excited state; otherwise, saturation will not occur.
The assumption that saturation of the atomic transition is
required for observing high-contrast all-optical switching
led to the early conclusion that all-optical switches must
operate with at least one photon per A\?/(27) [16]. As this
review shows, many recent all-optical switching schemes
beat this limit by several orders of magnitude through vari-
ous approaches. However, the metric remains useful as a
tool for comparison across designs.

Sensitivity, measured in photons per A% /(27), is only
one measure of switch performance. Depending on the de-
sign of a given all-optical switch, there are a wide range of
applications each of which has additional requirements. The
next section reviews two general application classes and
outlines the requirements a switching device must satisfy
for practical use.

3.1. Applications

Switches can be used in two classes of applications: infor-
mation networks and computing systems. In each of these
applications, information can be stored in either classical
or quantum degrees of freedom. Hence, the requirements
for a device vary depending on the intended application.

Classical, all-optical networks require switches to reli-
ably redirect or gate a signal depending on the presence of
a control field at the device input. Ideally, the switch shows
large contrast between on and off output levels and can be
actuated by low input powers. If the network carries quan-
tum information, the switch must be triggered by an input
field containing only a single quanta (photon). Additionally,
in the quantum case, the quantum state of the transmitted
signal field must be preserved.
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Table 1 Comparison of all-optical switching schemes. * Results of numerical simulation.

Switch design Reference Switching photons  photons/co Ty Cascadable
CQED Hood et al. [4] 1 10=* 25ns N
CQED Birnbaum et al. [5] 1 10°° 25ns N
EIT Zhang et al. [10] 20 107° 0.7 us N
Parametric Down Conversion Resch et al. [19] 1 - - N
6-wave mixing Kang et al. [20] 108 2 0.54 ps N
MI in fiber Islam et al. [21] ~2000 24 50 ps Y
Plasmonic nanowire" Chang et al. [6] 1 - - Y
3-wave mixing OPA Han et al. [22] 0.75 1075 4001fs Y
Fiber OPA Andrekson et al. [23] 150 - 5ps Y
Pattern-based switches

VCSEL solitons Hachair et al. [18] 24,000 140 500 ps -
semiconductor quantum wells"  Kheradmand et al. [24] - - <100ns Y
semiconductor quantum wells”  Schumacher et al. [25] - - - Y
Rubidium vapor Dawes et al. [11] 600 1072 3us Y

If a switch is to be used as a logic element in a classical
computing system, it must have the following characteris-
tics: input-output isolation, cascadability, and signal level
restoration [17]. Input-output isolation prohibits the device
output from having back-action on the device input. Cascad-
ability requires that a device output have sufficient power
to drive the input of at least two identical devices. Signal
level restoration occurs in any device that outputs a stan-
dard signal level in response to a wide range of input levels.
That is, variations in the input level do not cause variations
in the output level. Switching devices that satisfy these re-
quirements are considered scalable devices; the properties
of the individual device are suitable for scaling from one
device to a network of many devices.

While scalability describes important properties of a
switching device, sensitivity provides one way to quantify
its performance. A highly sensitive all-optical switch can
be actuated by a very weak optical field. Typical metrics
for quantifying sensitivity are: the input switching energy
(in Joules), the input switching energy density (in photons
pero = \? /27) [8,16], and the total number of photons in
the input switching pulse.

One may not expect a single device to satisfy all of the
requirements for these different applications. For example,
a switch operating as a logic element should output a stan-
dard level that is insensitive to input fluctuations. This may
be at odds with quantum-switch operation where the de-
vice must preserve the quantum state of the signal field. An
interesting question arises from these requirements: What
happens when a classical switch is made sensitive enough
to respond to a single photon? Reaching the level of single-
photon sensitivity has been the goal of a large body of
recent work that is reviewed below.

3.2. Previous research on
low-light-level switching

Two primary approaches to low-light-level switching have
emerged, both of which seek to increase the strength of
the nonlinear coupling between light and matter. The first
method uses fields and atoms confined within and strongly
coupled to a high-finesse optical cavity. The second method
uses traveling waves that induce quantum interference
within an optical medium and greatly enhance the effects
of light on matter. These methods have been recently re-
viewed in [11], the following brief discussion and Table 1
summarize the key differences between various methods.

Cavity quantum-electrodynamic (CQED) systems offer
very high sensitivity by decreasing the number of photons
required to saturate the response of an atom that is strongly
coupled to a mode of the cavity. Strongly-coupled CQED
systems show a nonlinear optical response to fields cor-
responding to much less than a single cavity photon [4],
and have also demonstrated the photon blockade effect
where the arrival and absorption of one photon prevents
subsequent absorption of a second photon [5].

A different technique for all-optical switching in cav-
ities relies on creating and controlling cavity solitons in
vertical cavity surface emitting lasers (VCSELs) [18]. A
VCSEL can be prepared for cavity solitons by injecting a
wide holding beam along the cavity axis. A narrow “write”
beam superimposed on the larger holding beam induces a
cavity soliton that persists typically until the original hold-
ing beam is turned off. This system naturally serves as a
pixel-based optical memory, where solitons are written to
and stored in the cavity field.
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In contrast to cavity systems, traveling wave approaches
can operate with multi-mode optical fields and also achieve
few-photon sensitivity. Recent progress in traveling-wave
low-light-level nonlinear optics has been made through the
techniques of electro-magnetically induced transparency
(EIT) [7, 10, 26-29]. As an example, Harris and Ya-
mamoto [8] proposed a switching scheme using the strong
nonlinearities that exist in specific states of four-level atoms
where, in the ideal limit, a single photon at one frequency
causes the absorption of light at another frequency. To
achieve the lowest switching energies, the narrowest possi-
ble atomic resonances are required, which can be obtained
in complex experimental environments such as trapped cold
atoms [9, 10,28-30].

Other low-light-level all-optical switching experiments
have also been demonstrated recently in traveling-wave
systems. By modifying the correlation between down-
converted photons, Resch et al. [19] created a conditional-
phase switch that operates at the single photon level. Using
six-wave mixing in cold atoms, Kang et al. [20] demon-
strated optical control of one field by applying another input
switching field.

Another approach combines the field enhancement of-
fered by optical cavities with the strong coupling of co-
herently prepared atoms. Bistability in the output of a cav-
ity filled with an EIT medium that also shows large Kerr-
type nonlinearity [31] exhibits switching. Photonic crystal
nanocavities have also shown bistability switching [32].
Taking a different approach, Islam et al. [21] exploit a
modulational instability in an optical fiber interferometer
to gate the transmission of a strong beam by injecting a
weak beam.

Many of these other systems satisfy some, but not all,
of the criteria for scalability. Of the systems just discussed,
CQED systems are designed to operate in a single field
mode, which limits the number of input and output channels
to one per polarization. Additionally, all fields are strongly
coupled to the atom-cavity system so the control and sig-
nal fields must be of comparable strength. Thus a CQED
switch is not cascadable. EIT systems suffer from a similar
drawback in that the input and output fields are required to
have the same power, making them not cascadable. Another
highly sensitive system, the modulational-instability fiber
interferometer, is both cascadable and exhibits signal level
restoration. In several ways, the latter system is similar to
pattern-based devices: it exploits the sensitivity of insta-
bilities and uses a sensitive detector (an interferometer in
their case and pattern orientation in the present case) to
distinguish states of the switch.

Recently, there has been a proposal that does not use
cavities or traveling optical fields, but instead takes ad-
vantage of photon-induced surface plasmons excited in a
conducting nano-wire that couple strongly to a two-level
emitter placed nearby. This strong coupling enables effects
that are similar to those observed in CQED. Specifically,
Chang et al. [6] suggest that a system consisting of a nano-
wire coupled to a dielectric waveguide can be used to create
an optical transistor that is sensitive to a single photon. Pho-

tons in the dielectric waveguide are efficiently coupled to
plasmons that propagate along the nanowire. A two-level
emitter placed close to the nanowire has a strong effect on
the plasmon transmission. The absorption of a single pho-
ton by the emitter is sufficient to change the nanowire from
complete plasmon reflection to complete plasmon trans-
mission. If implemented as proposed, a surface-plasmon
transistor could operate with single-photon input levels, and
gate signals containing many photons.

Finally, another general approach to low-light all-
optical switching has been demonstrated based on optical
parametric amplification (OPA). Two specific results high-
light this technique which shows promise for ultra-fast all-
optical switching. First, using three-wave mixing OPA in a
beta-barium borate crystal, Han et al. [22] demonstrate a
cascadable all-optical switch that can be actuated by a field
with an average of 0.75 photons. This switch operates in
the ultrafast regime and can be actuated in 400 fs. However,
the contrast ratio between the on and off states, 1.032:1, is
significantly smaller than in other switching schemes. In
this proof-of-principle demonstration, measuring the switch
response required phase-sensitive detection. In a fiber-optic
system, Andrekson et al. [23] operate the OPA in the satu-
rated regime and observe high-contrast (>3 dB) switching
with as few as 150 photons. This fiber-based switch is cas-
cadable and has a response time on the order of 5 ps. Spe-
cific advantages of this system are that it is fiber-based and
operates at telecommunications wavelengths. One draw-
back, however is that the ratio between the strong signal
power and the weak control power is fixed by the OPA gain.
This limitation can be relaxed by using a longer fiber or
fiber with larger nonlinearity. As demonstrated, 500 m of
highly nonlinear fiber requires strong signal powers on the
order of one watt.

Many all-optical switches have been successfully
demonstrated over a period spanning several decades. How-
ever, in almost every case, one or more important features
is missing from the switching device. With the require-
ments of scalability and sensitivity in mind, this review
presents recent results generated from a new approach to
all-optical switching.

3.3. Switching with Transverse Optical Patterns

A new approach to all-optical switching is to exploit collec-
tive instabilities that occur when laser beams interact with
a nonlinear medium [1]. One such collective instability oc-
curs when laser beams counterpropagate through an atomic
vapor. In this configuration, it is known that mirror-less
parametric self-oscillation gives rise to stationary, periodic,
or chaotic behavior of the intensity [33,34] and/or polariza-
tion [35-37].

Another feature of counterpropagating beam instabil-
ities is the formation of transverse optical patterns, i.e.,
the formation of spatial structure of the electromagnetic
field in the plane perpendicular to the propagation direc-
tion [38,39]. This is also true for recent experiments where
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a wide variety of patterns can be generated, including rings
and multi-spot off-axis patterns in agreement with previous
experiments [37,38,40].

Building an all-optical switch from transverse optical
patterns combines several well-known features of nonlin-
ear optics in a novel way. Near-resonance enhancement of
the atom-photon coupling makes our system sensitive to
weak optical fields. Using optical fields with a counterprop-
agating beam geometry allows for interactions with atoms
in specific velocity groups leading to sub-Doppler non-
linear optics without requiring cold atoms. Finally, using
the different orientations of a transverse pattern as distinct
states of a switch allows one to maximize the sensitivity
of the pattern forming instability. Instabilities, by nature,
are sensitive to perturbations, so by combining instabilities
with resonantly-enhanced, sub-Doppler nonlinearities, re-
searchers in this field have created a switch with very high
sensitivity.

4. Switching in warm Rb vapor

A pair of beams counterpropagating through a nonlinear
optical medium give rise to patterns formed by light that is
spontaneously emitted at an angle to the pump-beam axis.
This section presents experimental results of pattern forma-
tion in a counterpropagating beam system where a sample
of warm rubidium vapor serves as the nonlinear medium.

4.1. Experimental apparatus

A diagram of the atomic-vapor experimental setup is shown
in Fig. 1 [11]. Two beams of light from a common laser
source counterpropagate through warm rubidium vapor
contained in a glass cell. The light source is a frequency-
stabilized cw Ti:Sapphire laser, the output of which is spa-
tially filtered using a single-mode optical fiber with an an-
gled entrance face and a flat-polished exit face. The beam
is then collimated using a pair of convex lenses arranged
as a telescope. The spot size (1/e field radius), denoted by
wy, is controlled by the configuration of the telescope, and
the beam waist is located in the center of the vapor cell.
The power ratio between the pump beams is controlled by
a half-wave plate at the input of the first polarizing beam
splitter (PBS1). We denote the beam passing through PBS1
as the forward beam and the reflected beam as the back-
ward beam. A second half-wave plate in the backward beam
path rotates the polarization such that the pump beams are
linearly polarized with parallel polarizations.

The cell is fixed with length L = 5 cm, and a diameter
of 2 cm. The cell contains a droplet of rubidium, melting
point 39.3 °C, which is in equilibrium with rubidium vapor.
The rubidium contained in the cell has not been isotopically
enriched and thus contains the two naturally abundant iso-
topes: ~ 72% %5Rb, 28% 3"Rb. The cell is heated to 80 °C
corresponding to an atomic number density for 8’Rb of

LASER

Figure 1  (online color at: www.Ipr-journal.org) Experimental
setup for transverse optical pattern generation. The output of a
frequency-stabilized cw Ti:Sapphire laser serves as the source. A
polarizing beamsplitter (PBS1) separates the forward (cw) and
backward (ccw) beams within the triangular ring cavity. The back-
ward beam is brought into horizontal polarization by a half-wave
plate (A\/2). The forward and backward beams counterpropagate
through a warm ®’Rb vapor contained in a 5-cm-long glass cell. A
polarizing beam-splitter (PBS2) reflects instability-generated light
in the vertical polarization which is observed by a CCD camera
and avalanche photodiode (APD).

2x 10! atoms/cm?. The cell has uncoated quartz windows
that have fixed and opposing tilt angles of 11 degrees
with respect to the incident laser beams to prevent possible
oscillation between the windows. The cell has no paraffin
coating on the interior walls that would prevent depolar-
ization of the ground-state coherence, nor does it contain
a buffer gas that would slow diffusion of atoms out of the
pump laser beams. The Doppler-broadened linewidth of
the transition at this temperature is ~550 MHz. To pre-
vent the occurrence of magnetically-induced instabilities
and reduce Faraday rotation, a cylindrical pu-metal shield
surrounds the cell and attenuates the ambient magnetic
fields by a factor of > 102. In order to attenuate the static
magnetic field created by the heaters coils, they are placed
outside the shielding.

A polarizing beam splitter (PBS2) placed in the beam
path separates light polarized orthogonally to the pump
beam. This light, henceforth referred to as output light,
is subsequently split with a 50/50 beamsplitter and then
observed simultaneously using any two of the following:
a CCD-camera (Marshall V-1050A), an avalanche pho-
todiode (Hamamatsu C5460), or a photomultiplier tube
(Hamamatsu H6780-20) as shown in Fig. 1.

4.2. Instability generated light

In an experimental setup similar to that described above,
Dawes et al. [1, 11] observe instability generated light
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(output light) in the state of polarization orthogonal to that
of the pump beams and with the same frequency as the
pump beams. The following sections describe features of
the instability as well as the conditions required for observ-
ing pattern formation. The experimental variables are the
frequency of the pump light, the alignment and intensity of
the pump beams, and the pump beam waist wy.

The fixed cell length has been chosen to balance large
optical depth, which increases with increasing L, and avail-
able transverse modes, which decrease with increasing L.
The Fresnel number

wg

F =31 ®)
quantifies the number of transverse modes supported by
the geometry where A is the wavelength [15]. Dawes et
al. have observed light generated off-axis for Fresnel num-
bers between 1.9 and 7.8, corresponding to wy between
270 ym and 550 pm, respectively. The results reviewed here
correspond to wo = 455 um with A = 780 nm, or F = 5.3.
The other fixed parameter, the temperature, has been
chosen based on optimizing the pattern-formation. Chang-
ing the temperature of the cell affects both the temperature
of the atomic vapor and the atomic number density. For
this work, changing the atomic number density primarily
affects the optical depth of the vapor. By varying the cell
temperature, and observing the amount of optical power
generated by the instability, Dawes et al. found that the op-
timum temperature is 80° C. Fitting the absorption profile
at 7' = 80° C to a model for Rubidium absorption, they
find that the maximum Doppler-broadened optical depth at

this temperature is oL ~ 55 [11].

4.2.1. Pump-beam frequency

The power of the output light is maximized (and the thresh-
old for the instability is lowest) when the frequency of the
pump beams is set near an atomic resonance, i.e., the in-
stability occurs near either the D, or D, transition of 87Rb.
The results reviewed here are for pump-beam frequencies
near the D, transition °S1», — P3, 780 nm wavelength).

Fig. 2 shows the power of the output light as a function
of pump frequency detuning, defined as A = v—vp—_1 pr—1
in cycles/s. One can observe several sub-Doppler features,
where the maximum power emitted in the orthogonal po-
larization occurs when the laser frequency v is tuned
A = +25MHz. The Doppler-broadened linewidth of the
transition at this temperature is ~ 550 MHz, hence, the
generated light is only emitted for pump frequencies in a
narrow range within the Doppler profile. For this detuning,
3.5 uW of output light is generated in the forward direction,
indicating that ~ 1% of the incident pump power is being
converted to the orthogonal polarization. Because the de-
tuning is small relative to the Doppler width, a significant
amount of the pump light is absorbed by the medium. Al-
though the medium is optically thick (L ~ 55), there is
substantial bleaching with 415 uW of forward pump-beam

Output Power in
Orthog. Pol. (uW)
N
I
|

A (MHz)

Figure 2 Instability-generated optical power as a function of
pump laser frequency detuning (A = v — vp—y_p'—1). The plot
shows the power generated in the forward direction and in the state
of polarization orthogonal to that of the pump beams. These data
correspond to a single scan through the >S 1, (F = 1) — *P3n(F”)
transition in 8’Rb from low to high frequency. The bold tick marks
at the top of the frame indicate the hyperfine transitions labeled by
FF’, where F (F’) is the ground (excited) state quantum number.
Pump beam power levels for this data are 415 uyW (forward) and
145 uW (backward), and wg = 455 pum.

power, which allows transmission of 50 uW of forward
pump light. Of this transmitted power, 3.5 uW, or ~ 7%, is
converted to the orthogonal polarization [11]. In the next
section, we discuss how the presence of absorption affects
the instability.

The instability clearly occurs on the blue-detuned (high-
frequency) side of the °S1(F = 1) — 3P3,(F' = 1) tran-
sition. This is the side of the resonance where the nonlinear
refractive index has a positive value and hence self-focusing
is expected to occur. This experimental observation agrees
with theoretical models and can be explained using a sim-
ple argument based on weak-wave retardation [41]. The
forward four-wave-mixing process can only become phase
matched for off-axis beams if the nonlinear refractive in-
dex m, has a positive value, i.e., on the high-frequency
side of an atomic resonance [14]. If nsy is negative, the
off-axis wavevectors are shortened, and thus cannot be
phase-matched to the pump-beams regardless of the angle
0[14,42].

The width of the feature shown in Fig. 2 changes with
pump power such that it is narrower near threshold. This
change indicates that phase matching depends on the pump
power such that a wider range of frequencies are phase-
matched for larger pump powers. The amount of power
generated in the orthogonal polarization is also lower near
threshold and increases linearly with increasing pump
power as described in the following section.

4.2.2. Pump-beam intensity

The instability observed in this system has a very low thresh-
old; the power required to induce self-oscillation is less than
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1 mW, which is comparable to the results obtained from
coherently-prepared atomic media [27]. A common way to
measure the instability threshold for a setup with counter-
propagating beams is to fix the power of one of the beams
and measure the output power as a function of the power in
the second pump beam [27,36]. For a pump-beam detuning
of A = +25MHz and with a fixed forward pump power of
415 uW, Dawes et al. find that the backward pump power
threshold is ~75 uW, corresponding to a total pump power
of 4990 uW [11].

Another way to measure the instability threshold is to
determine the minimum total pump power necessary to
generate output light. We find that there is an optimum
ratio of forward power to backward power of ~3-to-1. At
this ratio, the threshold for off-axis emission is 385 uW,
which is slightly lower than the threshold measured with
fixed forward beam power. Dawes et al. report patterns
and switching with ~560 uW of total power, corresponding
to 40% above threshold. Both threshold measures demon-
strate that the nonlinear process that generates new light is
induced by a pair of very weak fields. This indicates strong
nonlinear matter-light interaction comparable with the best
reported results to date for warm-vapor counterpropagating
beam systems [27].

For most of the early observations of nearly-degenerate
instabilities, strong pump fields were used (typically hun-
dreds of mW) [38,40,43]. A considerably higher threshold
was reported for the first observation of polarization insta-
bilities in a sodium vapor [36], where a threshold of tens
of mW was found when the pump fields were tuned near
an atomic resonance. More recently, Zibrov et al. [27]
observed parametric self-oscillation with pump powers in
the pW regime using a more involved experimental setup
(“double-A” configuration) designed specifically to lower
the instability threshold. In their experiment, atomic co-
herence effects increase the nonlinear coupling efficiency.
They report oscillation with several mWs of total pump
power. With 5 mW of forward-beam power, their instability
threshold corresponds to 20 uW in the backward beam. In
contrast, the results reviewed here demonstrate that spon-
taneous parametric oscillations are induced by ©W-power
counterpropagating pump-beams without the need for spe-
cial coherent preparation of the medium. Furthermore, Zi-
brov et al. observed only on-axis emission, whereas Dawes
et al. found that off-axis emission requires roughly half as
much pump power as on-axis emission with our pump beam
configuration. In situations where low power and high sen-
sitivity are important, such as in all-optical switching, the
lower instability threshold may make off-axis instabilities
preferable.

4.2.3. Patterns

In the context of all-optical switching, pattern formation is
the most notable feature of the counterpropagating beam in-
stability described above. When the pump beams are above
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Figure 3  (online color at: www.lpr-journal.org) Light is gen-
erated along cones (blue) centered on the pump-beam axis when
pump beams (red) of a sufficient intensity counterpropagate
through warm rubidium vapor. A far-field detection plane shows
patterns formed by the generated light. b) A ring pattern is ex-
pected for a perfectly symmetric system. ¢) Six spots form a
hexagon, the typical pattern for pump beam powers more than
20% above threshold. d) Two spots are observed just above thresh-
old or when the pump beams are mis-aligned. From [1].

threshold, i.e., have total power greater than 420 uW, gen-
erated light is emitted at an angle § ~ 4 mrad with respect
to the pump beam axis, as shown in Fig. 3a. A perfectly
symmetric system may at first be expected to generate
light with intensity that is distributed evenly around the
azimuthal angle, and hence would form a ring pattern in the
far field. However, there are two effects that prevent this
ring pattern from being a stable steady-state of the present
system. First, symmetric nonlinear systems are known to
spontaneously select states that are in a symmetry group
that is a subset of the original one. As an example of this,
simulations of counterpropagating beam systems exhibit
multispot patterns even when the pump beams are perfectly
symmetric [44]. Second, perfect symmetry is unattainable
in the laboratory where imperfections in optical elements
impart small perturbations on the phase and amplitude of
the beams. The instability responds to such perturbations
by generating patterns that are not cylindrically symmetric.
For this reason, the most common patterns reported consist
of two, four, or six spots in a variety of arrangements. In all
cases, the spots are located along the ring projected by the
cones onto the detection plane as illustrated in Fig. 3b—d.

Most theoretical treatments consider only the case
where the pump beams are strictly counterpropagating,
corresponding to pump beams with equal and opposite
wavevectors. In experiments, it is common to have slight
mis-alignment, either intentional or accidental, between the
pump beams.

With misaligned pump beams, the generated patterns
change. This change is due to a change in the phase-
matching conditions for the different azimuthal angles.
Hence, there are different amounts of gain for different
off-axis beams, and for those each beam that experiences
sufficient gain for self-oscillation, a spot will be gener-
ated in the pattern. Alignment of the pump beams provides
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Figure 4 The peak-to-peak oscillations generated by the sec-
ondary modulational instability are indicated by the vertical bars.
The output light generated in the orthogonal polarization is plotted
as a function of total pump-beam power. Data are collected with
fixed forward-to-backward pump-beam power ratio of 3:1, and
detuning A = +25 MHz.

one method for pattern selection in the counterpropagating-
beam system.

4.2.4. Secondary instability

In addition to the instability responsible for pattern forma-
tion, the system exhibits a secondary modulational instabil-
ity (MI) that is manifested as oscillations in the intensity
of the generated light. The frequency of the intensity oscil-
lations due to this instability depends on the alignment of
the pump beams such that larger misalignment increases
the oscillation frequency. For well-aligned beams, coun-
terpropagating along a common axis, the MI is generally
suppressed as long as the pump-beam intensity is not sig-
nificantly far above threshold. Fig. 4 illustrates the onset of
this secondary instability for the case of slightly misaligned
pump beams. The threshold behavior described previously
is evident here as well: the power generated in the orthogo-
nal polarization increases linearly above 385 uW total pump
power. Also visible is the saturation of the pattern-forming
instability near 800 uW, where increasing the total pump
power no longer increases the generated power. The height
of the vertical bars indicates the peak-to-peak amplitude of
oscillations due to the secondary MI. There is a notable in-
crease in the amplitude of the MI oscillations above 560 uW
total pump power (indicated in the figure), and a significant
increase above 800 uW total pump power.

When the pump beams are made to counterpropagate
with a small angle between their axes, observing the pho-
todetector signal with a spectrum analyzer reveals a har-
monic series with a fundamental frequency that increases
for larger angular separation of the pump beam axes. The
spectrum for pump beams misaligned with ~ 0.4 mrad
between the beam axes has a fundamental frequency of
250kHz [45]. The atomic vapor system operating with
this amount of pump beam misalignment exhibits sensitive
switching as discussed in the next section
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Figure 5 The switch responds to a series of ten pulses by trans-
ferring power from the off state spots to the on state spots. a) The
switch beam power steadily decreases in power from 1.2nW to
200 pW. b) The off spot is extinguished in the presence of the
switch beam. ¢) The on spot power increases in the presence of
the switch beam. The data shown are collected in a single shot that
contains 22 additional ten-pulse sets with similar response. No
signal averaging has been performed on the switch response data
(b,c). The measured switch-beam power shown in (a) is averaged
over 10 shots.

4.3. Switch response

To quantify the dynamic behavior of their switch, Dawes
et al. inject a series of pulses by turning the switch beam
on and off with the EOM [11]. Spatially filtering the output
pattern enables direct measurement of the switch behavior.
High-contrast switching is confirmed by simultaneously
measuring two output ports. Fig. Sa indicates the power of
the injected switch beam as a function of time. The sig-
nal from the off-state detector is shown in Fig. 5b and is
high when the switch beam is not applied and low during
a switch-beam pulse. The on-state detector is shown in
Fig. 5c and shows the opposite behavior: it is low when the
switch beam is not applied and high during each switch-
beam pulse. These alternating signals demonstrate switch-
ing of the power from one switch state to another with high
contrast. Because the switch reverts to the off state after the
switch-beam is turned off, this device acts as a non-latching
switch. The total power generated in the pattern is ~ 3 uW.
Each aperture selects one of the two generated spots, so the
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switch output power is ~ 1.5 uW per aperture. Of course,
two apertures could be used per switch state to transmit the
full ~ 3 uW output.

One notable feature of the system response is the tran-
sition from complete switching to partial switching. The
first three pulses in Fig. 5 show that the on-state detector
is fully illuminated and the off-state detector is dark. This
indicates that the switch beam has caused complete rotation
of the pattern and transferred all of the power from the off-
state spots to the on-state spots. For the last seven pulses
in the series, the system exhibits partial switching, where
the on-state detector is partially illuminated and the off-
state detector is partially darkened. This partial response
indicates that the off-state spots are suppressed but not ex-
tinguished when the switch beam is applied with less than
900 pW. Similarly, the on-state spots are generated but not
at full power. In this intermediate regime, from 900 pW to
<300 pW, the response depends on the input power.

Barely visible in Fig. 5 is a the secondary modulational
instability that causes small oscillations in the total output
power. The modulation period of this secondary instability
(4 us= 1/250kHz) and the characteristic response time of
the switch both correspond roughly to the transverse transit
time of a thermal atom through the pump beams. This is a
typical time scale for nonlinearities due to optical pumping.

4.3.1. Switching photon number

To quantify the sensitivity of the system, Dawes et al. mea-
sure the response time and calculate the number of photons
N, required to actuate the switch. The response time of the
device 7, is defined as the time between the initial rising
edge of the electronic signal driving the EOM and the point
where the on-spot signal crosses a threshold level set to
roughly correspond to a signal-to-noise ratio of ~3dB.!
Results using this threshold are shown in Fig. 6a and we
find that the measured response time increases as the input
switch beam power decreases.

The number of photons required to actuate the switch
is given by N, = 7, P;/ E, where 7, is the response time,
Py is the switch beam power and E, = 2.54 x 107! Jis
the photon energy. For ten switch-beam powers between
510 pW and 35 pW, the response time is plotted in Fig. 6a,
and the number of switching photons is plotted in Fig. 6b.
The response time is longer for weak switch-beam powers
so the photon number decreases gradually as the input
power decreases. The data points indicate the average of 22
data points for each of the ten switch-beam pulses, and the
error bars represent one standard deviation in the response
times observed for each pulse.

The implication of the linear regression shown in
Fig. 6b is that, in the limit as Py — 0, the number of

! The SNR~3 dB criterion corresponds to the threshold where
the bit-error-rate decreases below 0.05, i.e., it is the point where
pulses can be correctly detected with probability greater than
5% [46].
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Figure 6  (online color at: www.lpr-journal.org) The response

time 7, and number of switching photons N, as a function of
input power. Data are generated from 22 sequential traces like the
one shown in Fig. 5 acquired after a single trigger. The error bars
indicate one standard deviation of the measured values. The solid
line indicates the fit: IV, = 7081 P, + 404 for P, in nW. It should
be noted that the response times for the switch are on the order of
a few ps, whereas the response time of the measurement system
is < 35ns.

switching photons /N, — 400. This would indicate that
the minimum number of photons capable of actuating the
switch is above 400. The final data point shown correspond
to switching with N, = 600 = 40, only 200 photons above
this limit, and a factor of ~5 lower than the first reported ob-
servation of pattern-based all-optical switching with 2,700
photons [1].2 It is also important to consider a possible
threshold for the switch beam power (P;). There must ul-
timately be a minimum switch beam power and a rough
estimate of that threshold is simply the switch beam power
that corresponds to 400 photons incident over a response
time 7, > 5 ps. Hence, the upper limit on the switch beam
power threshold is 20 pW. Given how rapidly the response
time increases as Py — 0, the threshold is likely to be much
lower. Additional data below P; = 35 pW would improve
the estimates of these limits.

4.3.2. Transistor-like response

The response shown in Fig. 5, demonstrating the saturated
and linear response regimes, suggests that this device oper-
ates in a manner that is analogous to an electronic transistor.
Furthermore, the two response regimes exhibited by the

2 The error reported in this value of N, is a combination of
statistical error in the measurement of the switch-beam power
(~0.5%), and statistical variations in the response time measured
for 22 sequential shots (~5%).
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switch indicate that the output satisfies the conditions for
signal level restoration, as discussed in Sect. 3.1.

For a device to exhibit signal level restoration, varia-
tions in the input level cannot cause variations in the output
level. In every device, however, there is a narrow range of
input levels, known as the intermediate region, that lead to
intermediate output levels. For input levels above or below
the intermediate range the output is saturated as a logic
high or low respectively. In the case of the Rb-vapor device,
this intermediate region is between 900 pW and <35 pW.
For input levels above 900 pW, the output is high with a
level set by the pump beam power.

Signal level restoration is a key property of the elec-
tronic transistor enabling large networks of electronic logic
elements. This demonstration of an optical logic element
that exhibits level restoration is a key step towards practi-
cal optical switches. An all-optical transistor would have
applications in many data processing and communication
networks in the future.

One notable limitation of the atomic-vapor switch sys-
tem is the slow response time (on the order of 3 us). A
related approach, based on optical pattern formation in
semiconductor systems, shows promise as a high-speed,
high-bandwidth system. The details of nonlinear optical
pattern formation in semiconductor systems, and a discus-
sion of recent work, is presented in Sect. 6.

5. Numerical results

In order to establish the necessary ingredients for a theo-
retical model to describe the switching behavior observed
experimentally, we develop a simple extension to a previ-
ous model of a pattern-forming counterpropagating beam
system. Based on the model of Firth and Paré [47], nu-
merical simulations performed by Chang et al. describe
hexagonal pattern formation in a counterpropagating beam
system [48]. We extend this prior work by simulating all-
optical switching with transverse patterns. Specifically, we
simulate the effect of a weak switch beam on the orienta-
tion of the hexagonal pattern generated by gaussian pump
beams that counterpropagate through a Kerr-type nonlinear
medium. Simulations of the time response of this system
show behavior that is qualitatively similar to experimental
observations. In particular, the response time increases as
the switch-beam power decreases.

5.1. 3D model

The model used in these simulations is described in [47]
and has been extended for our investigations to the case
of two transverse dimensions. We assume scalar fields,
i.e., the model does not account for the vector nature of
the fields, and hence cannot describe polarization instabili-
ties, and we do not include absorption effects. Nonetheless,
this model is sufficient to describe pattern formation in

counterpropagating-beam nonlinear optical systems. The
forward and backward fields counterpropagating through a
Kerr-like medium are described by the dimensionless equa-
tions

0 0 o N . 9 9
(az+at> F = —47T}_VLF+2(|F| +2|B| )F7(6)

9 9 _ b 2 . 2 2
( ot )B_47T.7:VLB+Z(|B| +2|F|)B.(7)

Time is normalized by the transit time through the medium,
t, = noL/c, the longitudinal dimension z is normalized by
the medium length, and the transverse dimensions x,y are
normalized by the beam waist wy where F is the Fresnel
number, see Eq. (5). F' (B) is the forward (backward) field
amplitude. The nonlinear coefficient n» is scaled into the
field amplitudes and is assumed to be positive as appropri-
ate for the experimental conditions described in Sect. 4.1.
The medium length is also scaled into the field amplitudes
such that F?2 = IL where I is the pump-beam intensity.
One consequence of this scaling is that the product I L rep-
resents the nonlinear phase shift, in radians, experienced
by an off-axis wave.

The transverse profile of the pump waves are assumed
to be Gaussian such that

F(z,y,0,t) = Foe™ (7" +0) ilertK) | ¢(p 4y (8)
B(z,y,L,t) = Boe (**1v") ©)

where L is the medium length, K , sets the misalignment
between forward and backward wave-vectors, and £ is a
delta-correlated Gaussian random variable with (¢) = 0.
The random time-independent noise source is included to
simulate the effects of small spatial variations in the input
beam. Typically, the peak-to-peak noise amplitude is set
to A¢ = 0.01, equivalent to 1 percent of the pump field
amplitude.

Egs. (6) and (7) are solved numerically using a split-
step beam propagation method where linear diffraction is
computed via fast Fourier transform [49]. The numerical
grid of 256 by 256 transverse points and 20 longitudinal
slices. The numerical grid is slightly rectangular with the z
dimension 1% larger than the y dimension. This prevents
the square symmetry of the grid from biasing the pattern
formation process. Additionally, suitable choice of param-
eters and appropriate spatial filtering are used in order to
avoid spurious high- K instabilities [50,51].

5.2. Controlled pattern rotation

The primary result presented by Chang et al. is the forma-
tion of hexagonal patterns in a three-dimensional model of
gaussian beams counterpropagating through a medium ex-
hibiting Kerr nonlinearity. Their simulations are conducted
with 7 = 63.7 and IL = 0.565, where the threshold for
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Figure 7 Numerical simulation of counterpropagating gaussian beams shows ring and hexagon pattern formation in the far field. a) For
this case, the pump beams are perfectly counter-propagating K, = K, = 0. The circle indicates the location of the switch beam in
the final three frames. b) The location of the on- and off-state apertures are indicated relative to the initial hexagon pattern that forms
att = 53. The on-state aperture (upper square) is located opposite the applied switch beam, and the off-state aperture (lower square)
transmits the spot immediately counter-clockwise from the on-state aperture.

plane-wave pattern formation predicted by Firth and Paré
is IL ~ 0.45. Therefore, Chang et al. simulate pattern for-
mation for pump beams that are 25% above the minimum
plane-wave threshold.

We have conducted simulations with a wide range of
values of F between 64 and 4, where our experimental
conditions correspond to F = 5.3. Simulations in this
range all exhibit hexagonal pattern formation and reproduce
the results of Chang et al. In order to simulate the specific
geometry of our experiment, the results reviewed here are
of simulations where F = 5.3 and IL = 0.565 (~ 25%
above threshold).

Images of the far field pattern generated in a typical
simulation are shown in Fig. 7a, where the time correspond-
ing to each frame is indicated in units of the transit time
t,. In the initial frame of Fig. 7a, the transmitted forward
pump-beam is visible at the center, and the weak off-axis
perturbation is visible to the right. This perturbation is used
to quickly induce hexagonal pattern formation. Without the
initial perturbation, hexagons are spontaneously generated
after 100-150 transit times. At ¢ = 17, the field that is
conjugate to the perturbation, and due to forward four-wave
mixing, is visible to the left of the central pump. The dark
dot in the center of the first two frames is the result of nu-
merical filtering used to remove the DC artifact introduced
by computing the far-field via FFT.> At ¢t = 23, a ring
pattern has formed that is replaced by hexagons at ¢t = 53.
The seed beam is turned off at ¢ = 35 and is not visible at
t = 53. It is interesting to note that the ring pattern, pre-
dicted by generalizing the models of Yariv and Pepper [52]
or Firth and Paré [47] to cylindrically symmetrical trans-
verse dimensions is a transient solution that appears early
(t = 23) in the development of the off-axis patterns. The
ring is not a stable solution for the system in the presence of
symmetry breaking, due in this case to the initial seed beam,
and the ring breaks up into six spots after a short time. The

3 This filtering is only performed on the images in order to
improve the contrast, and not during the simulation itself.

second row of frames shown in Fig. 7a are collected after
the application of an off-axis switch-beam, which turns on
at t = 85, and are discussed in the next section.

5.3. Switch response

In our simulations, much like in the experiments of Dawes
etal. [11], we observe that injecting a weak switch beam
into the nonlinear medium after hexagons have formed
causes the hexagon pattern to rotate such that a bright spot
is aligned to the direction of the switch beam. This rotation
is illustrated in the lower four frames of Fig. 7a. The switch
beam is applied at ¢ = 85, and becomes visible between
the two right-side spots at ¢ = 101. For the frames shown,
the switch beam power is Ps = 107*P,, where P, is the
power of each of the counterpropagating pump beams. At
t = 150, the counterclockwise rotation of the pattern can
be observed and continues until the end of the simulation
at t = 300 where the pattern has rotated such that the
locations that were previously bright are now dark.

As in the experiments, the patterns generated in this
simulation can be spatially filtered in order to define two
or more output channels. Fig. 7b indicates the location of
the apertures used to filter the numerical results. Square
apertures are used for numerical efficiency, but the results
are not expected to differ if they are replaced with round
apertures. The power transmitted by these apertures is cal-
culated by summing the simulated intensity values within
each aperture. For four simulation runs, each with different
switch-beam power, the power transmitted through the on-
and off-state aperture as a function of time ¢ is shown in
Fig. 8a and b, respectively.

After the initial transients in the pattern formation, the
power in the off- and on-spots stabilize within 50 transit
times. At t = 85, the switch-beam is applied and the pat-
tern begins to rotate, transferring power from the off-state
aperture to the on-state aperture. For Py = 107*P,, com-
plete rotation occurs within 200 transit times. For lower
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Figure 8  (online color at: www.Ipr-journal.org) The power
transmitted by apertures in the numerical model exhibits switching
behavior that is similar to the experimental system. The response
of the on- and off-state aperture transmission is shown for four lev-
els of switch-beam power. The switch beam is turned on at ¢ = 85,
indicated by the arrow in (a). As the switch-beam power decreases,
the simulation exhibits slower response, i.e., slower pattern rota-
tion. The switch-beam power (in units of pump-beam power) cor-
responding to these four traces are 10™* (solid black), 2.5 x 10~°
(large dash blue), 4 x 10~ (small dash red), and 1 x 10~ (dash-
dot green). The horizontal dotted line indicates the threshold used
to calculate response times for the simulated switch.

switch beam power, the pattern rotates more slowly as the
remaining traces show in Fig. 8. To compare the change in
response time observed in the simulation to that observed
experimentally, we measure the response time of the sim-
ulated switch as the time between the application of the
switch beam (¢ = 85) and the threshold crossing for the
on-spot. The threshold, also shown in Fig. 8, is chosen to
roughly correspond to the threshold level used in the exper-
iments.

The response time of the simulated switch data shown
in Fig. 9 ranges from 40 transit times to 210 transit times,
as shown in Fig. 9. For comparison, the transit time of the 5-
cm-long vapor cell used in our experiment is 160 ps, so the
simulated response times would correspond to experimen-
tal values of 6.4 ns and 33.6 ns respectively. Experiments
observe response times between 2 and 4 ps in Rb vapor, so
it is clear that this numerical model does not agree quan-
titatively with these observations. However, the simulated
response time does exhibit a sharp increase in the limit of
low switch-beam power, which is qualitatively similar to ex-
perimental observations. This increase in response time for
weak inputs may be an indication that the switch undergoes
critical slowing down [13], which would not be surprising
since the orientation of the pattern exhibits multi-stability
between the preferred orientations.
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Figure 9 Simulation of the switch exhibits an increase in re-
sponse time for decreasing power that is qualitatively similar to
experimental observations. To facilitate comparison to Fig. 6a, the
horizontal axis has high switch-beam power to the left and low
switch-beam power to the right.

Table 2 The correspondence between
P, / P, and P; in nW based on 560 uW
of total pump power.

P,/P, P.[nW]

1x107* 26
2.5 %1078 6.5
4 %1078 1
1x10°° 0.26

Another notable feature of these numerical results is
that, despite the limitations of the model, the amount of
switch-beam power, relative to the total pump power, re-
quired to rotate the pattern is of the same order of magnitude
as what has been observed experimentally. For reference,
Table 2 shows the correspondence between the normal-
ized switch-beam power P, /P, used in the simulations
presented above and the experimental values, based on total
pump-beam power of P, = 560 W from the experiments
in [11]. As an example, the third curve in Fig. § corresponds
numerically to Ps = 4 x 107%P,. In the work of Dawes
et al., this switch-beam to pump-beam power ratio would
imply a switch-beam power of 1 nW and their switch typ-
ically operates between 1 nW and 50 pW. Therefore, the
sensitivity demonstrated in experimental work is largely
described by this model.

There are certainly features of the experiment that these
simulations do not capture. In the first case, absorption is
neglected in assuming a Kerr-type nonlinearity. One conse-
quence of this is that misalignment of the pump beams
in the simulation does not serve to reduce the number
of spots generated. This is in contrast to the experiment,
where misaslignment of the pump beams results in a pair
of spots rather than a hexagon. This is likely due to the fact
that, without simulating absorption, there is no loss experi-
enced by the less-favored hexagonal components and, even
for large pump-beam misalignment, the pattern remains
a hexagon. Simulations that include misalignment of the
forward pump beam exhibit hexagonal pattern formation
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in addition to fluctuations in the pattern orientation and a
near-field pattern flow [53]. Just as for well-aligned pump
beams, the switch beam also causes pattern rotation when
the forward pump beam is misaligned, and the switch re-
sponse time diverges near zero switch-beam power in the
misaligned case as well.

Symmetry breaking may be responsible for pinning
the orientation of the pattern. Including pump-beam mis-
alignment in these simulations does appear to have this
effect and is the focus of ongoing work. Refinement of
the model to include absorption and saturation may also
improve the agreement between experiment and simulation.
Furthermore, because we have assumed a medium with an
instantaneous nonlinear response, the only timescale in the
Kerr model is the transit time. This leads to significantly
faster switch response in the model compared to experimen-
tal observations. To quantitatively model the response time
requires a more refined model of the nonlinear interaction
that includes optical pumping effects and the associated
time scales.

Although these initial simulations of pattern-based all-
optical switch exhibits a fast response time, the experi-
mental implementation in atomic vapor is relatively slow,
and hence is a low-bandwidth system. Recent work has
explored the possibility of extending these initial results
by developing semiconductor systems that exhibit nonlin-
ear optical pattern-formation. The final section describes
nonlinear optics in a semiconductor system, and reviews re-
cent results that demonstrate that such systems are potential
candidates for high-bandwidth all-optical devices.

6. Semiconductor systems

The promising experimental results on pattern switching in
atomic vapor (gaseous) systems have raised the question
whether similar effects can be expected in solid state sys-
tems, in particular semiconductors. One obvious advantage
of semiconductors over atomic systems would be the fact
that they can be more easily integrated in optoelectronic
communications networks. Currently, many semiconductor
devices are based on III-V compounds, such as GaAs, but
beyond that there is a large variety of other systems, from II-
VI compounds to group-III-nitride materials to zinc oxide
materials to silicon structures. Quite generally, semicon-
ductor systems offer great flexibility in terms of epitaxial
system growth (including active layers and mirrors), and,
of course, they are mechanically robust.

While those application aspects suggest that semicon-
ductors can be useful alternatives to the gaseous systems
described in the previous sections, one needs to realize that
the physics underlying the optical nonlinearities and the
resulting optical instabilities are very different in semicon-
ductors compared to gases. As we will show below, not all
of these differences favor the semiconductor system. From
a general point of view, we note that most semiconductor-
based optoelectronic devices operate at frequencies close
to the fundamental bandgap energy, i.e., they operate either

close to an exciton (the exciton being a bound electron-hole
pair) resonance or even in the band-to-band continuum. In
order to achieve optical instabilities, the optical nonlinear-
ity needs to be sufficiently large. Generally, this can be
achieved by tuning the pump beams close to an optical res-
onance and by using sufficiently high intensities. We have
seen in the previous sections that, in the atomic case, quasi
resonant excitation (within the Doppler-broadened atomic
spectral line) and high pump intensities (leading to signifi-
cant bleaching of the line) created the optical instabilities. It
is then natural to ask whether it is possible to create similar
instabilities in a semiconductor. Excitation near the low-
est exciton resonance and with sufficiently high intensity
can create similar instabilities. However, under high exci-
tation, an atomic resonance behaves very differently from
an exciton resonance. In atoms, strong pumping can bleach
the resonance and also lead to hole-burning and ac Stark
shifts. In these cases, the nonlinearity can often be mod-
eled, albeit approximately, by a single parameter ns. This
is in sharp contrast to excitons, where optical excitation
creates a complex many-particle system that fundamentally
changes the physics of the transition. For example, in the
lowest-order nonlinear optical regime (the x(®)-regime),
optical excitation creates, among other things, two-exciton
Coulomb correlations. Depending on the vectorial polar-
ization state of the optical beams, these correlations may
include bound two-exciton states (biexcitons). The biexci-
ton resonance and the two-exciton continuum correlations
lead to strong excitation-induced dephasing (EID), which
is usually much larger than the corresponding contribu-
tion from PSF (compare Fig. 10b discussed below). In the
language appropriate for semiconductors, the latter is as-
sociated with phase-space filling (PSF) [54]. The fact that
in a semiconductor the optical pump beam creates carri-
ers that lead to increased dephasing rates (EID) makes it
generally more difficult to achieve optical instabilities. It
therefore makes it necessary to study the origins of optical
nonlinearities and optical instabilities in semiconductors in
detail in order to provide a path toward pattern formation
and all-optical switching. It is necessary to find parameter
values and configurations in which the instability threshold
intensity is kept small. For example, EID has a strong de-
tuning dependence in the vicinity of the exciton resonance
(where by detuning we mean the difference between the
center frequency of the optical pump field, Aw, and the
exciton resonance €, Ae = hw, — €;). The problem of
EID can be controlled (or to some degree engineered) with
the help of quantum confinement and cavity enhancement,
as detailed below. Also, the optical nonlinearities depend
critically on the intensity and vectorial polarization of the
pump beam. Depending on the precise light beam and mate-
rial parameters (including the system’s geometry that may
or may not include cavity mirrors), the nonlinearity can
be dominated by PSF effects, instantaneous Hartree-Fock
(HF) Coulomb effects, and time-retarded two-exciton cor-
relations, to name the ones that will be discussed in more
detail later.
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6.1. Excitonic optical nonlinearities

Absorption spectra of non-excited direct-gap semiconduc-
tors exhibit discrete excitonic resonances, typically a few
meV below the fundamental bandgap. Nonlinear processes
involving excitons have been the subject of intensive re-
search for several decades (for recent text book treatments
and reviews see, for example [55-59]). In semiconductor
amplifiers and lasers we do not have discrete excitonic reso-
nances, but continuous spectral gain and absorption regions.
In the following, we will focus solely on excitonic reso-
nances, since they have been studied in great detail and
their optical nonlinearities are by now well understood. Fur-
thermore, because of their dominant role in optoelectronic
device concepts, we will discuss semiconductor quantum-
well systems, i.e., quasi-two dimensional systems. In thin
GaAs quantum wells, the lowest optical transitions are
dominated by heavy-hole excitons. In this case, the opti-
cal dipole selection rules are particularly simple. Both the
heavy-hole valence and the conduction band are two-fold
degenerate, and right circularly polarized light (denoted
by “+”) couples one valence band with one conduction
band, whereas left-circularly polarized light (denoted by
“-”) couples the other two bands.

In order to discuss excitonic optical instabilities, it is
advantageous to analyze the equation of motion of the
excitonic interband polarization p(t) separately from the
Maxwell propagation equation. Similar to the instabilities
discussed in Sect. 5.1, one can formulate the nonlinear equa-
tion of motion for p(t) in a way that generalize the concept
of phase-conjugate oscillation (PCO) [52]. Before describ-
ing the optical instabilities, we first discuss briefly the phys-

10.0
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E 60|
o 40 |
5 20 |
0.0 |-
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-8.0 ._l-:t.o | 0:0 | 4‘.0 | 810
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Figure 10  Exciton-exciton T-matrix in the co-circular polariza-
tion channel with v = 0.75 meV. Here, ¢(0) denotes the 1s-hh
exciton energy. From [62].

ical origin of the excitonic nonlinearities. If a pump beam
with frequency close to the lowest exciton resonance cre-
ates many excitons in the system, the constituent electrons
and holes interact via the Coulomb interaction, and in addi-
tion the Pauli principle yields PSF effects. We assume here
that the intensity of the pump beam is not too high, so as to
avoid exciton ionization and the formation of an electron-
hole plasma. The effects of the Coulomb interaction are
usually divided into (static) HF interactions and correlation
effects. In the lowest-order (in the light field amplitude)
nonlinear regime, and if the optical excitation contains both
circular polarizations “+” and “-”, the two-exciton correla-
tions contain bound two-exciton states (biexcitons) as well
as two-exciton scattering continua. If the optical excitation
contains only one circular polarization (either “+” and *“-”),
the correlations contain only two-exciton continua. All two-
exciton correlations can contribute to EID, as will be shown
below. The equation of motion for the coherent excitonic
interband polarization is [60—63]

thi = (Ea: - Z.’Y)pi
_ [¢Is(0) _ 2APSF|pi|2] dchi + VHF|pi|2pi

+ 2p:|:* /Oo dt/g:t:t(t _ t')pi(t')pi(t')

— 00

w7 [ 0T Tt (o)
Here, €, is the 1s-hh exciton energy, v a phenomenologi-
cal excitonic dephasing constant, d.,, the interband dipole
matrix element and E the light field amplitude at the po-
sition of the QW. Both p and E depend on time and on
the coordinate vector r = (z,y) in the plane of the QW.
APSF — 4af Vor /7 accounts for excitonic PSF, where the
bulk exciton Bohr radius is denoted by ag = 170 A. The
two-dimensional 1s exciton wavefunction ¢;5(r) is eval-
vated at r = 0. VHF = 27(1 — 31572/4096) /al? E}
(with the exciton binding energy Ey ~ 13meV) is the
HF Coulomb matrix element. Unless otherwise noted, the
time argument is t. The correlation kernels G are given by
Gt =g =Gtand Gt~ =G+ =G* + G, with
G¥* as defined in Eq. (22) of [63], including a two-exciton
dephasing rate 2. In Eq. (10), we have neglected excitonic
correlation of order 3 and higher, since such correlations
are usually weak and very difficult to detect [64].

In order to illustrate the physical contents of the various
nonlinear terms in Eq. (10), we Fourier transform the corre-
lation functions from the time domain to the frequency ({2)
domain and show their frequency dependence in Figs. 10
and 11. In Fig. 10, we also include the effect of PSF. The
corresponding GPSF follows from the PSF term in Eq. (10)
if E is expressed in terms of the first-order p [62]. In pump-
probe configurations (including the instability analysis dis-
cussed in the next subsections), the real parts of the G’s
are proportional to the pump-induced shift of the exciton
resonance, while their imaginary part is a measure of EID.
Consistent with [62], we call TT+ = VHF 4 2G++ and
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Figure 11 Same as Fig. 10, but for the counter-circular polar-
ization channel. From [62].

T+~ = 2GT~ the T-matrix in the “++” and “+-” chan-
nel, respectively. We see from Fig. 10a that, in a system in
which there is only one circular polarization, HF yields a
blue shift that overcompensates the correlation-induced red
shift. PSF yields a shift that is positive (negative) below
(above) the two-exciton continuum edge (A2 = 2¢(0)).
Adding the PSF to the HF contribution yields a negative
slope on the HF blue shift with zero contribution at the
two-exciton continuum edge. Fig. 10b shows that, in the
two-exciton continuum (742 > 2e(0)), the two-exciton cor-
relations yield strong EID, whereas the correlation-induced
EID becomes negligible below the two-exciton continuum.
Furthermore, PSF yields a small contribution to EID inde-
pendent of frequency.

Fig. 11a shows that, in the counter circular polarization
channel, we have the biexciton resonance below the two-
exciton continuum. Here, the shift has a cross-over from
red to blue. The biexciton resonance also yields strong EID,
as can be seen in Fig. 11b. In these figures, a relatively
large dephasing has been used. For smaller values of 7,
the spectral region where biexcitonic EID is large becomes
narrower [63].

Knowledge of the frequency dependent excitonic PSF,
HF and correlation effects is crucial for the search of optical
instabilities and pattern formation. Using, as general guide-
lines, the criteria that a shift towards the pump frequency
(which reduces the effective detuning and thus enhances
the action of the pump beam) and small EID is beneficial
for instabilities, we conclude from Figs. 10 and 11 that, in
the co-circular channel, pumping above the two-exciton
continuum Yyields the desired shift but unfortunately strong
EID, whereas pumping below the two-exciton continuum
avoids EID but unfortunately yields a HF shift of the exci-

ton resonance away from the light frequency. We will see
in Sect. 6.3 that use of a microcavity can yield a way out
of this dilemma. This is because the EID increases with
increasing effective mass (here the mass of the exciton).
As we will discuss in more detail below, a small polariton
mass in a microcavity can substantially reduce EID.

In the counter-circularly polarized channel, Fig. 11a
does not give clear guidelines for possible instabilities, but
one might assume that the region around the biexciton
resonance may yield the desired sign of the light-induced
exciton shift and small EID if the biexcitonic dephasing is
sufficiently small. We will explore this possibility in the
next section.

6.2. Instabilities in single quantum wells

In order to study instabilities in single quantum wells, we as-
sume the geometry depicted in Fig. 12, with a pump beam in
normal incidence and a probe beam at a small angle relative
to normal incidence. The exciton polarization is restricted
to the quasi-two dimensional plane of the QW. The polar-
ization component corresponding to the background-free
four-wave mixing direction, denoted in the following by the
subscript f, travels in the direction ky = 2k, —k, = —k,,
since k, = 0 (where all wavevectors are two-dimensional
vectors). Hence, the two-dimensional spatial Fourier de-
composition of the excitonic polarization, with Fourier com-
ponents up to first order in the grating wavevector, yields

pi (t7 I‘) =

In these systems, counterpropagating beams are not needed
for backward four-wave mixing and instabilities of the PCO
type. One cannot distinguish between forward four-wave
mixing and backward four-wave mixing.

Because biexcitonic effects can be assumed to be criti-
cal for optical instabilities [65—68] in single quantum wells,
it is advantageous to re-write Eq.(10) in a way that al-
lows for a linear stability analysis with full inclusion of
the temporal retardation effects related to biexciton forma-
tion [69]. This can be achieved by separating the continuum

Py () + pE(B)e™™ + pF (e, (11

\ kl‘
pump —————— ¢ k=0
........ ‘ ks

probe (signal)
Qw

Figure 12  (online color at: www.lpr-journal.org) Geometry of
the four-wave mixing process in a semiconductor quantum well
(QW). The in-plane wave vectors of the interband polarization are
indicated, with the pump wavevector being zero.
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part and the bound biexciton part in the correlation func-
tion G*F = GET + GEF and eliminating GEF in favor
of an equation of motion for the biexciton amplitude b(t),
yielding new equations of motion

ihp* = (e2 — in)p*
_ [(lﬁs(o) _ 2APSF|p:I:|2] dch:t + VHF|p:i:|2p:t

+ 2p:t* /Oo dt'gii(t _ t')pi(t')pi (t’)

— 00

o0
407 [ A0GET - pTert ()

—0o0
+CrLpEh(t) (12)
with
ihb = (€4 — 2i7)b+ 1Coup™p ™, (13)

where C,, is a function of the exciton-exciton interac-
tion and the biexciton wavefunction, and is taken to be
0.54E} ag in the following. The propagation of the optical
field E* across the QW is described with a transfer-matrix
method that accounts for radiative corrections and that as-
sumes the QW to be infinitely thin (see, for example, Eq.
(AS) of [62]). It is important to note that, in a single quan-
tum well, the excitonic polarizations are sources for light
fields via radiative decay, but there is no feedback of the
radiative decay on the incoming light fields. Hence, the
dynamics of the system can be described solely with the
equation for the excitonic polarizations. The situation will
be different in the microcavity (Sect. 6.3), where the strong
interaction between the excitonic polarization and the cav-
ity mode require a full description of the system dynamics
including the equations for p and E.

Using the Fourier decomposition (Eq. (11)) of Egs. (12)
and (13), it is straighforward to derive the linear set of equa-
tions of motion for p;t and pJT (fully given in [70]) and the
nonlinear equation for the pump-induced interband polar-
ization pff, which is independent of pi - The equations
for pi f contain self-wave mixing (SWM) terms, ip, ; ~
ps7fp1*)Ep and ips p ~ ps7fp;pp, and cross-wave mixing
(XWM) terms, ips s ~ p} ;ppLp and ips,p ~ p} PpPp-
The XWM terms are necessary for instabilities and possi-
ble pattern formation.

To analyze the possibility of optical instabilities, we
perform a linear stability analysis (LSA). The LSA is done
without an incoming probe field and for a monochromatic
cw pump field Ef (t) = E;fe~*»! and pump polarization

pi(t) = pire sl with pr = EF = 0 (w, is the pump
frequency). We evaluate the memory integrals using the
Markov approximation [ps. ((t') & ps,;(t)e»(#=)] for
the two-exciton continuum in the correlation kernels G+,
G*T. The term driving the bound biexciton amplitudes
bs, ;(t) is proportional to pjp;'f Tt p;,—LpI s With the ansatz

Do, (8) = s, g ()e ™" and by 5 (t) = by (t)e™#", the
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probe and FWM dynamics take the form
So(t) = M (1) (14)
d tP = M PplL),

with p(t) = [5F (8), 51 (1), Bz (8), 577 (2), bs (1), B3 (0]
The system is unstable if at least one of the eigenvalues \;
of M fulfills Re{\;} > 0.

Since atomic nonlinearities are clearly very successful
in terms of allowing instabilities, it is instructive to first
evaluate Eq. (14) for the semiconductor quantum well keep-
ing only the atomic nonlinearities (PSF). For this case, an
analytical evaluation using first-order (in the pump field
amplitude) pump polarizations has been discussed in [71].
It was found that instability driven only by PSF cannot be
expected. However, a generalization of the model, in which
spatial dispersion of the exciton frequency is taken into ac-
count (i.e., £, entering the pump equation is different from
that entering the signal and FWM equations) allows, at
least in principle, for instabilities. This is shown in Fig. 13.
We show the case of no-dispersion as well as two differ-
ent in-plane wavevectors of the signal. Here, k. is the
maximum in-plane vector for the given frequency. Clearly,
we find a region of positive eigenvalues (i.e., instabilities)
for the case of ks = 0.75kn,x, Which indicates that spatial
dispersion is indeed beneficial of the PSF-driven instability.

We stress that Fig. 13 is only a case study, meant to illus-
trate how PSF could in principle yield near-resonance insta-
bilities in semiconductor quantum wells. However, PSF can
only yield instabilities at positive detuning, at which corre-
lation processes yield large EID. In the calculation leading
to the result in Fig. 13, we had to use a relatively high den-
sity, 1.7 x 10 cm—2; a density where our exciton-only
model may no longer be valid. Furthermore, even if exci-
tons were still dominating in that density, EID should be
expected to be very significant. It is therefore necessary to
study the complete system, including PSF, HF, continuum
correlations and biexcitonic correlations. Solving for this
case Eq. (14), we find the instabilities depend sensitively
on the vectorial polarization of the pump beam. While, in

PCO+SWM
< 0.0
[0]
E
= -0.11
=
(0]
¢ 0.2

0.04 -002 0.00 002 0.04 006 0.08
detuning [meV]

Figure 13  (online color at: www.lpr-journal.org) Linear sta-
bility analysis for a linearly polarized pump for steady-state total
coherent exciton density n'%® = 1.7 x 10**cm™2. Shown are the
real parts of the eigenvalues A; of the matrix M vs. pump detun-
ing. Only phase space filling (no exciton interaction) is included
here. The dotted line separates the stable (Re{A} < 0) from the
unstable (Re{A} > 0) regime. From [71].
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Figure 14  Linear stability analysis for a linearly polarized
pump for steady-state total coherent exciton density n'"* = 1.6 x
10*°cm™2. Shown are the real parts (a) and imaginary parts (b) of
the eigenvalues A; of the matrix M for negative pump detuning.
Eigenvalues are represented by solid lines for the co-linear (XX)
and by dashed-dotted lines for the cross-linear (XY) polarization
configuration. From [70].

this case, for circularly polarized pump beams, we find no
instabilities, linearly polarized (say “X” polarized) pump
beams do yield instabilities, as shown in Fig. 14. We find
three different unstable regions (Re{\;} > 0) caused by
the biexcitonic (+—) XWM terms. The labels XX and XY
denote the vectorial polarizations of the pump (always X)
and the unstable modes or probe fluctuations (either X or
Y). We see that a pump beam tuned into the two-photon
resonance with the biexciton allows for a polarization in-
stability (the unstable probe is Y polarized), whereas in
the spectral region just below and above the biexciton reso-
nance we have polarization-preserving instabilities. The XY
instability and the XX instability below the biexciton are
single-color instabilities (the imaginary parts of the eigen-
values are degenerate in the instability region), whereas the
XX instability above the biexciton is a two color instability.
In the latter, the imaginary parts of the “unstable” eigenval-
ues are split, which means that we have two modes with the
same growth rates but different frequencies. We note that
at the density used in Fig. 14, 1.6 x 10~ *%cm ™2, density-
induced ionization of excitons can be safely assumed to
be irrelevant.

While the single quantum well instabilities discussed
so far could possibly be used for pattern formation, it needs
to be noted that these instabilities are found to be relatively
fragile. They can be expected only if the dephasing rate
is very small, such as that reported in [72]. In the next
subsection, we turn our focus on a less fragile instability in
a different semiconductor system.

6.3. Pattern switching in semiconductor
microcavities

In the following, we consider planar semiconductor mi-
crocavities, which consist of a semiconductor quantum
well and two mirrors (Fig. 15). In high quality cavities, the

Figure 15  (online color at: www.Ipr-journal.org) Sketch of
a planar semiconductor quantum well (QW) microcavity, with
distributed Bragg reflector (DBR) mirrors and normal-incidence
pump beam.
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Figure 16  (online color at: www.lpr-journal.org) a) Sketch of

the linear cavity polariton dispersion. The bare cavity and exciton
dispersions are shown, together with the lower (LPB) and upper
(UPB) polariton branches of the coupled cavity-mode exciton
system. The fundamental pairwise off-axis scattering of pump
polaritons is also indicated. b) Sketch of the hexagonal switching
geometry in the transverse plane. The elastic circle is defined by
the pump frequency and the dispersion of the LPB. The basic
switching action triggered by the probe is indicated. The radial
bars indicate the variation in the magnitude of off-axis momenta
k as included in the nonlinear polariton dynamics. From [25].

exciton-photon coupling is strong enough so that the eigen-
modes of the system become cavity polaritons [73]. The
in-plane dispersion of these polaritons is shown in Fig. 16
along with the dispersions of the uncoupled excitons and
photons. The parabolic dispersion of the uncoupled ex-
citons is not visible in this figures because of the small
wavevector region shown. It is apparent from the figure that
the effective mass of the lower polariton branch (LPB) is
much smaller than that of the uncoupled exciton. As men-
tioned above, small mass is related to small EID [74,75],
and the smallness of EID at the LPB has been a major factor
for their usefulness in providing optical instabilities.

In the past decade, the parametric amplification of po-
laritons (a process usually related to optical instability) has
been the subject of intense experimental and theoretical
research; see, e.g., [76-81] or the reviews given in [82-84].
In a typical pump-probe setup in a co-circular polarization
configuration (with the pump coming in at an angle 1, un-
like the case shown in Fig. 15), the amplification of a weak
probe pulse at normal incidence has mainly been attributed
to four-wave mixing (FWM) processes mediated by the
repulsive Coulomb interaction of the exciton constituent
of the polaritons excited on the lower polariton branch
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(LPB) [75,78,79,81]. For a specific pump in-plane mo-
mentum (defining the so-called “magic angle”), energy and
momentum conservation is best fulfilled for the FWM pro-
cesses and thus a pronounced angular dependence of this
amplification is observed [76,78]. Because, in the strong
coupling regime, the LPB is spectrally well below the two-
exciton scattering continuum, the influence of excitonic
correlations in the scattering processes of polaritons on
the LPB is strongly suppressed (compared to the situation
in a single quantum well without the strong coupling to
a confined photon cavity mode, as discussed in the previ-
ous subsection). However, even for co-circular pump-probe
excitation, these correlations must be considered for a com-
plete understanding of the experimental results [75, 80, 85].

In the following, we review the recent work [25, 86, 87]
on optical instability and switching analogous to the atomic
case (Sect.4). We concentrate on the dynamics in one spin
subsystem (say spin up) by choosing circularly polarized
excitation. We neglect a possible longitudinal-transverse
(TE-TM) cavity-mode splitting [88]. As a further simplifi-
cation, we use the optical dipole selection rules and matrix
elements appropriate in quasi-normal incidence (a complete
vectorial formulation of the theory with selection rules for
arbitrary angles can be found, for example, in [89]). We
apply a spatial decomposition of cavity field and exciton
polarization into Fourier components Ey and py, respec-
tively, with in-plane momentum k [75]. The nonlinear set
of coupled equations of motion for Fy and py reads

ihEy =hw By — Qupx + iht B (15)

ihpe =(ef — i17)p — B+ Y, (2400 plyprc B
qk’k”

+ VHED} D1 Dierr ) O i 4k — ke - (16)

The cavity-field in Eq. (15) is treated in quasi-mode approx-
imation [90]. The effective incoming field EeﬁmC driving
the field E) in the cavity mode is obtained from a simple
transfer-matrix formalism that includes the radiative width
(I' = wh?t2 / (eycny), with the background refractive index
nyp, the vacuum velocity of light ¢ and dielectric constant
€g) of the cavity mode and yields transmitted and reflected

field components: E Kine = = By trans = Ex inc — Fx e With

—(ht./ 2nbcso)Ek. The cavity-to-outside cou-
pling constant ¢, is chosen such that I' ~ 0.4meV for
hw = 1.5eV. We include excitonic PSF and HF exciton-
exciton Coulomb interaction in the nonlinear exciton dy-
namics in Eq. (16); two-exciton correlations are neglected
in this study and are expected to give merely quantitative
changes because the pump is, in what follows, tuned far
(several meV) below the bare exciton resonance [74,75] (cf.
Fig. 16a). Inclusion of two-exciton Coulomb correlations in
our calculations would basically lead to renormalization of
Vur in Eq. (16) and give rise to a small additional excitation-
induced dephasing [74,75]. The bare exciton and cavity in-
plane dispersions are denoted by ey, (with e = 1.497eV)
and wg, with iwg = €f/cos¥ and sind = [k|c/(wnp).
The dephasing is v = 0.4meV, & = 8meV is the

Ek7reﬁ -

20d (a directions 1 and 4

VAN AWAS

intensity
(in units of inc. control int.)
N
o

] (b) SW|tch|ng s|gna| dlrectlons 2 and 5
i I WA G
O-. ) '\' ) v ) v ) v ) v ) v ) v ) v
204 (¢) directions 3 and 6
10
P B NN N ~ A /< A
o R e e e R e
£ = 1(d) incoming control direction 2
E oo 11
S = 1
2% o U |
- O 0 T T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14
time (ns)
Figure 17  (online color at: www.lpr-journal.org) a—c) Switch-

ing in the output signals in a reflection geometry (the signals
with out-of-plane momentum opposing the incident pump’s are
plotted). The intensities per direction are normalized to the in-
coming control intensity. The switching signal in b is about 15
times stronger than the incoming control in d that is triggering
this signal (note the different scales on the vertical axes in panels
a—c and d). In panel b, direction 2 is shown as the solid line and
direction 5 as the dashed line. Similar switching is observed in a
transmission geometry (not shown). From [25].

vacuum Rabi splitting, and A = APSF/¢¥ (0). A spatial
anisotropy in the system can be modeled, e.g., by including
an anisotropic cavity dispersion wy,.

In Fig. 17, we show results where we have numeri-
cally integrated the nonlinear coupled Egs. (15) and (16)
for quasi steady-state pump excitation in normal incidence.
The pump frequency is tuned 5 meV below the bare exciton
resonance. The pump (not shown) reaches its peak intensity
Toump ~ 19.5 kWem—2 shortly after 0 ps and is then kept
constant. The total density of excitons excited by this pump
pulse is on the order of 10'° excitons per cm?. We impose a
slight anisotropy in the cavity dispersion by shifting wy, to
lower energies by 0.075 meV in directions 1 and 4. Above
a certain pump threshold intensity, phase-matched pairwise
scattering of pump-induced polaritons, driven mainly by
the HF term in Eq. (16), leads to spontaneous (fluctuation-
triggered) off-axis signal formation (similar to [91, 92]).
Initially, signals in all the considered off-axis directions
start to grow simultaneously. However, as these signals
grow over time, the anisotropy (symmetry breaking) fixes
the spontaneous off-axis pattern at directions 1 and 4. This
can be seen in Fig. 17a—c for times less than 2ns. After
2ns, we apply a weak probe (Ipobe &~ 0.1 Wem™2) with
the same frequency as the pump frequency in direction 2
(Fig. 17d). Now, the strong off-axis emission switches to
directions 2 and 5 and vanishes in the “preferred” directions
1 and 4. Note that the switching signal in directions 2 and 5
is about 15 times stronger than the probe pulse itself (i.e.,
part of the pump is redirected from normal incidence to
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the directions 2 and 5). In other words, the gain in direc-
tion 2 is & 11.7 dB. When switching off the weak probe
at &~ Hns, the strong off-axis emission switches back to
the preferred directions 1 and 4. The switching can then be
repeated as shown in the figure. On/off switching times in
our study are = 1ns (corresponding to switching brought
about by ~ 13 photons if a beam waist of 2 ym diameter is
assumed). The ns switching times imply that the bandwidth
limitation (due to slow switching times) encountered in the
atomic system may be significantly improved in semicon-
ductor microcavities. However, a systematic study of the
theoretical limitations of the switching times remains an
important outstanding issue. In particular, a careful study
of the switching times’ dependence on the pump and probe
power would be desirable.

Since the pump excitation is off-resonant, a relatively
strong pump is required to reach the instability threshold.
In an experimental setup, unintended off-axis scattering of
pump light could reduce the contrast ratio between “on” and
“off” states and thus the performance of the switch. How-
ever, this practical issue might be alleviated using another
existing microcavity design [93] where resonant pump ex-
citation could be used. We have estimated that a reduction
of the threshold intensity by two orders of magnitude could
be expected [25].

A related study of all optical pattern switching has been
given in [24]. There, a comprehensive numerical analysis
of pattern formation and switching in semiconductor mi-
crocavities is presented. It has been found that patterns can
be controlled with beams that have 100 times smaller in-
tensities than the intensity of the pattern, with switching
times comparable to the ones shown in Fig. 17. The nonlin-
earity used in [24] is restricted to PSF due to the presence
of incoherent carriers, and the evaluation focuses on the
positive detuning case. As discussed above, at positive de-
tuning strong EID from correlations may be expected to
hinder instability, although further investigations of EID
from incoherent carriers are needed to verify this hypoth-
esis. At any rate, the investigation in [24] supports our
belief that semiconductor microcavities may be the most
promising semiconductor system for future demonstrations
of transverse optical pattern switching at low light levels.
Experiments on stimulated polariton scattering in micro-
cavities have shown an impressive trend towards higher
operational temperatures [80, 93].

In addition to microcavities, other systems may also
be candidates for instabilities and switching. For example,
instabilities in the co-circular polarization channel can be
expected in Bragg-spaced quantum wells [94], which are a
specific realization of one-dimensional resonant photonic
bandgap structures), because, in these systems, a suppres-
sion of EID as a consequence of the strong coupling be-
tween the quantum wells and the light field (similar to the
case of semiconductor microcavities discussed above) is
beneficial for optical instabilities.

We end the discussion of semiconductor systems by
noting that, for all these systems, a substantial amount
of further research is needed to experimentally verify the

predicted optical switching phenomena and, once that is
achieved, to make their performance characteristics com-
patible with the requirements of real devices.

7. Future directions

The initial results demonstrating optical patterns as a mech-
anism for all-optical switching have led to further research
in both atomic vapor and semiconductor systems. There are
many potential directions for future research. One immedi-
ate step forward is to extend the present numerical model
described in Sect. 5 to allow for pump-beam misalignment.
This work is presently underway and demonstrates that
the symmetry breaking introduced in this way does con-
tribute to the overall sensitivity of the switch. Additionally,
improved quantitative agreement with the experimental
results from the vapor system may be obtained by using
an improved numerical model that takes into account the
optical-pumping nonlinearity.

Experimental verification of the switching phenomena
in semiconductor systems is required to confirm the cur-
rent predictions. Furthermore, such devices must then be
optimized for specific applications. As this review suggests,
pattern-based all-optical switches can be implemented in
a variety of systems. Some, such as atomic vapor, may be
ideal for ultra-low-light applications, while others, such as
semiconductor systems, may be ideal for high-bandwidth
applications.
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