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The propagation of light pulses through semiconductor heterostructures is studied under the combined
influence of polariton effects and optical nonlinearities. For the investigated heterostructures, the light field
strongly interacts with the excitonic resonances of the material which leads to a series of polariton resonances.
Even in the linear optical regime, the theoretical description is distinctly complicated by the presence of
surfaces and interfaces which prevents an analytical solution of the polariton problem. In the coherent nonlin-
ear regime, dynamical changes of the polariton resonances and contributions of biexcitons will be addressed.
For this purpose, we combine a microscopic treatment of the boundary problem for the optical interband
excitations and the propagating light field in a sample of finite thickness with a description of excitonic and
biexcitonic nonlinearities. A practicable scheme is developed to provide a self-consistent solution of general-
ized Schrödinger and Heitler-London equations for the excitonic and biexcitonic excitations, respectively,
together with Maxwell’s equations under strict consideration of the boundary conditions. To study the influence
of excitonic and biexcitonic nonlinearities on single-pulse propagation, pump and probe transmission experi-
ments, and four-wave mixing spectra, the dependence of the results on the light polarization is analyzed.
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I. INTRODUCTION

The resonant interaction of a propagating light field with
the excitonic states of a semiconductor heterostructure is a
topic of fundamental interest. The strong coupling of the
induced material polarization with the optical field leads to
polariton resonances, which give rise to polariton beating in
time-resolved pulse transmission1 or provide strong modifi-
cations of the excitonic transmission spectra in linear2–5 or
nonlinear6,7 optical experiments. Polariton effects are directly
influenced by the presence of boundaries in the system,
which modify the spatial dispersion. Even in the linear opti-
cal regime, the proper theoretical description of exciton-
polaritons in the presence of system boundaries has been a
debated topic for more than 30 years. The physical origin of
complications is the coupling of exciton relative and center-
of-mass �COM� motion at the sample boundaries. The ab-
sence of translation invariance prevents a simple analytical
diagonalization of the coupled light and matter Hamiltonian
as known from bulk semiconductors.8 The proper description
of the system boundaries for the electromagnetic fields and
the excitonic polarization naturally results in a nonlocal
semiconductor response function as emphasized in Refs.
9–12.

In the frequently used phenomenological approaches13–15

the coupling of exciton relative and COM motion is ne-
glected which results in a local exciton response function
where only the COM motion is subject to quantization ef-
fects in the confinement geometry; the exciton relative mo-
tion is assumed to be independent of the boundaries of the
system and is approximated by the result of the infinitely
extended medium. To facilitate the solution of the wave
equations for the electromagnetic fields within this approach,
the introduction of additional boundary conditions13–15

�ABCs� becomes necessary as a result of the above discussed
approximations. These ABCs are not uniquely defined and in
many situations the specific choice of ABCs can influence

the theoretical predictions.16 For heterostructures with inter-
mediate thickness, which is large compared to the quantum-
well �QW� limit and small enough to prevent the bulk limit,
the breakdown of macroscopic polariton models based on
ABCs has been demonstrated.4,5,16 In this case, a micro-
scopic treatment of boundary conditions16–18 is required to
unambiguously describe the corresponding experiments. The
QW limit refers to the case where the confinement of carriers
yields a quasi-two-dimensional exciton spectrum. Then the
optical response at the band edge is dominated by contribu-
tions from the lowest subband for electrons and holes, re-
spectively. The QW limit is typically found for layer thick-
nesses �2a0

X, with a0
X being the bulk exciton Bohr radius. In

the opposite limit, for layer thicknesses �20a0
X, the bulk

limit is obtained, where the confinement is so weak that the
hydrogenlike optical response of the bulk material is repro-
duced as given by the Elliott formula.8

Beyond the linear optical regime, optical nonlinearities
have been studied in a variety of heterostructures. For polar-
iton effects in optically coupled QWs and microcavities, see
Ref. 19. The nonlinear polariton dynamics in these systems
has been described both in the coherent and incoherent
regime.20 For a sample thickness approaching the bulk limit,
a local approach has been used to model nonlinear pulse
propagation effects21,22 and four-wave mixing signals.23 Be-
sides the coherent regime, propagation effects have been in-
vestigated in the case where incoherent carrier populations
play an important role.6,24

In this paper we present a consistent theoretical descrip-
tion of nonlinear light propagation for a situation where the
spatial extension of the semiconductor is of the order of sev-
eral Bohr radii. Nonlinear optical transmission spectra are
studied in a regime where both the optical fields and the
induced material polarization are strongly influenced by the
boundaries of the system. In this case a proper microscopic
treatment of the boundary conditions becomes, like in the
linear regime, indispensable. Our formulation bridges the
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gap between the two-dimensional QW limit and the bulklike
behavior of the optical response.

For optical excitation with sufficiently weak external
fields, the only dynamic quantity which determines the opti-
cal properties of the semiconductor material is the excitonic
transition amplitude.8 To extend the theoretical description of
propagation effects to the nonlinear regime, the dynamics-
controlled truncation25–27 �DCT� approach is used here to
terminate the infinite many-particle hierarchy in the equa-
tions of motion for the electronic system. This approach re-
sults in a systematic perturbation theory in which all relevant
many-particle correlations can, without further approxima-
tion, be taken into account in a certain order in the optical
field. So far, theories based on this scheme have successfully
been applied to quasi-two-dimensional quantum-well sys-
tems, e.g., in Refs. 28–33, or to one-dimensional model
systems.34 Our formulation properly accounts for the finite
spatial extension of the exciton and biexciton states within a
spatially inhomogeneous system. The approach is based on a
direct solution of the two-particle and four-particle
Schrödinger equations for the exciton and biexciton motion
together with Maxwell’s equations.7 We apply microscopic
boundary conditions to avoid ambiguities due to ABCs. Ex-
cellent agreement of our theoretical results with experimental
nonlinear transmission spectra has already been demon-
strated for a ZnSe/ZnSSe heterostructure in Ref. 7.

The present paper is organized as follows. The equations
of motion for the relevant dynamic quantities, namely the
excitonic transition amplitude and the biexcitonic correlation
function, are deduced in Sec. II A. To make a solution of the
resulting equations of motion possible, a description of the
excitonic and biexcitonic problem in the exciton eigenbasis
is derived in Sec. II B. Excitonic eigenstates are used here
that individually fulfill the physical boundary conditions of
the system.5,18 The required matrix elements are calculated in
the new basis. In the quasi-two-dimensional limit, our for-
mulation reduces to the eigenfunction expansion that has
successfully been applied to quantum-well systems.35–37 In
contrast to quantum-well models,32,33,36 however, the expan-
sion of biexciton states in terms of exciton eigenfunctions
can here systematically be extended beyond the exciton
ground state. In Sec. III A the resulting matrix elements are
discussed and the dependence of the biexciton binding en-
ergy on the layer thickness is studied. In Sec. III B the theory
is applied to the calculation of optical transmission spectra.
The complicated interplay of propagation effects and exci-
tonic as well as biexcitonic nonlinearities is discussed in de-
tail. Pronounced signatures of the bound biexciton state and
the exciton-exciton scattering continuum are identified.
These signatures show a strong dependence on the polariza-
tion of the exciting light fields.

II. THEORY

A. Equations of motion

Our starting point is the Hamiltonian of the electronic
system interacting with an external light field,

H = Hkin + Hdipole + HCoulomb. �1�

It consists of three terms: The kinetic energy of electrons and
holes Hkin, their dipole coupling to the external light field

Hdipole, and the Coulomb interaction of the carriers HCoulomb.
To simulate a typical experimental setup, we consider a

semiconductor layer in a slab geometry5 with finite thickness
in the z direction and infinite, homogeneous extension in the
x-y plane. A barrier material surrounds the layer of interest to
create a heterostructure with spatial confinement potential for
electrons and holes in conduction and valence bands, respec-
tively. To describe the spatially inhomogeneous system, it is
convenient to define suitable creation �k

i†�z� and annihilation
�k

i �z� operators in the Heisenberg picture, that refer to elec-
trons �i=e� with in-plane momentum k= �kx ,ky� or holes �i
=h� with in-plane momentum −k at position z. To simplify
the notation, the time dependence of these operators is not
made explicit. The creation and annihilation operators fulfill
the fermionic anticommutation relations

��k
i�z�,�k�

j†�z���+ = ��z − z���kk��ij,

��k
i�z�,�k�

j �z���+ = 0, ��k
i†�z�,�k�

j†�z���+ = 0. �2�

Typically, the crystal structure of the considered semiconduc-
tor layer is grown fully strained to the surrounding barrier
material, which lifts the degeneracy of valence band states
with different magnitude of the z component of the electronic
total angular momentum mj at the gamma point. Conse-
quently, in these heterostructures, interband transitions from
different valence bands to the conduction band are well sepa-
rated and can be excited selectively in the optical spectra.5,16

In order not to overburden our theory and to concentrate on
more important details, in the following, the formulation is
restricted to a two-band model with spin degenerate heavy-
hole valence and conduction band as illustrated in Fig. 1. For
this system, the z component of the total angular momentum
mj can take the values ±1/2 for electrons and ±3/2 for holes
which are in the following included in the band indices e ,h
to simplify the notation.

Using the above definitions the kinetic part of the Hamil-
tonian �1� takes the form

Hkin = �
k
� dz��

e
�k

e†�z��k,z
e �k

e�z� + �
h

�k
h†�z��k,z

h �k
h�z�� ,

�3�

with the one-particle energy operators

FIG. 1. Schematic illustration of the two-band model with con-
duction �mj = ±1/2� and heavy-hole valence �mj = ±3/2� band at the
zone center. The optical dipole selection rules are included for light
in the circular polarization states e+ or e−, respectively.
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�k,z
i =

�2k2

2mi
* −

�2

2mi
*

�2

�zi
2 + Egap�ie + Vext

i �zi� �4�

for electrons �i=e� and holes �i=h� in effective mass ap-
proximation; me

* and mh
* denote the effective electron and

hole masses, respectively. The external potential Vext
i �z� is

used to model the band offsets in the heterostructure. The
interband dipole interaction of the electronic system with the
external electromagnetic field is given by

Hdipole = − �
keh
� dz��k

e†�z��k
h†�z�dehE�z�

+ �k
h�z��k

e�z�deh
* E�z�� , �5�

with the dipole matrix element deh�k ,ze−zh�=deh��ze−zh�,
which is assumed to be local in real space and k indepen-
dent.

The Coulomb interaction of electrons and holes in enve-
lope approximation has the form

HCoulomb =
1

2 �
kk�q

� dzdz�Vq
zz�

� ��
ee�

�k+q
e† �z��k�−q

e�† �z���k�
e��z���k

e�z�

+ �
hh�

�k+q
h† �z��k�−q

h�† �z���k�
h��z���k

h�z�

− 2�
eh

�k+q
e† �z��k�−q

h† �z���k�
h �z���k

e�z�� , �6�

with the Coulomb matrix elements

Vq
zz� =

e2

2�0nbg
2

exp�− 	q		z − z�	�
	q	

. �7�

Here e is the magnitude of the electronic charge, �0 is the
vacuum dielectric constant, and nbg is the nonresonant back-
ground refractive index of the semiconductor material.

To describe the interaction of the electronic system with
an external electromagnetic field on a microscopic level, the

resonant contribution to the macroscopic polarization,

P�z,t� = �
ehk

deh
* p�k,z,z�

eh �t� = �
ehk

eehdeh
* p�k,z,z�

eh �t� , �8�

is calculated in terms of the excitonic transition amplitude,

p�k,z,z��
eh �t� = 
�k

h�z���k
e�z�� . �9�

The dipole selection rules, visualized in Fig. 1, and the opti-
cal polarization state of the macroscopic polarization �8� can
be represented using

d− 1
2

− 3
2

= dehe+ and d+ 1
2

+ 3
2

= dehe−, �10�

with e±=1/�2�ex± iey� and the Cartesian basis vectors ex and
ey. The macroscopic polarization, expressed in terms of the
two circularly polarized contributions, is given by

P�z,t� = P+�z,t�e+ + P−�z,t�e− = deh
* �

k


p�k,z,z�
− 1

2
− 3

2 e+ + p�k,z,z�
+ 1

2
+ 3

2 e−� .

�11�

With the ansatz E�r , t�=E+�z , t�e++E−�z , t�e− and B�r , t�
=B+�z , t�ie++B−�z , t�ie− for circularly polarized transverse
electromagnetic fields, Maxwell’s equations are decoupled
for each circular polarization state. For propagation in the z
direction they can be used in the one-dimensional form

nbg
2 �

�t
E±�z,t� = − c0

2 �

�z
B±�z,t� −

1

�0

�

�t
P±�z,t� , �12�

�

�t
B±�z,t� = −

�

�z
E±�z,t� . �13�

The dynamics of the excitonic transition amplitude �9�
follows from Heisenberg’s equation of motion for the opera-
tors �k

e�z�, �k
h�z� with the Hamiltonian �1� and the commuta-

tion relations �2�. Within the DCT formalism,25–27 the mac-
roscopic polarization of the system is calculated up to third
order in the electromagnetic field. This yields the following
equations for the dynamics of the excitonic transition
amplitude38

i �
�

�t
p�k,ze,zh�

eh = ��k,ze

e + �k,zh

h �p�k,ze,zh�
eh − �

k�

Vk−k�
zezh p�k�,ze,zh�

eh − dehE�ze���ze − zh� + �
e�h�

�deh�E�ze� � dzp�k,z,ze�
*e�h� p�k,z,zh�

e�h

+ de�hE�zh� � dzp�k,zh,z�
*e�h� p�k,ze,z�

eh� � + �
k�e�h�

� dze�dzh���V
k−k�

ze�zh p�k,ze�,zh��
*e�h� − V

k−k�

zh�zh p�k�,ze�,zh��
*e�h� �p�k,ze,zh��

eh� p�k�,ze�,zh�
e�h

+ �V
k−k�

zh�ze p�k,ze�,zh��
*e�h� − V

k−k�

ze�ze p�k�,ze�,zh��
*e�h� �p�k�,ze,zh��

eh� p�k,ze�,zh�
e�h � + �

k�qe�h�
� dze�dzh���Vq

zh�zhp�k�+q,ze�,zh��
*e�h�

− Vq
ze�zhp�k�,ze�,zh��

*e�h� �beh
e�h�

�k,ze,k+q,zh�
�k�+q,ze�,k�,zh�� + �Vq

ze�zep�k�+q,ze�,zh��
*e�h� − Vq

zh�zep�k�,ze�,zh��
*e�h� �beh

e�h�
�k+q,ze,k,zh�
�k�,ze�,k�+q,zh��� . �14�

In Eq. �14� the biexcitonic correlation function
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beh
e�h�

�k4,z4,k3,z3�
�k2,z2,k1,z1� = 
�k1

h��z1��k2

e��z2��k3

h �z3��k4

e �z4�� − 
�k1

h��z1��k2

e��z2��
�k3

h �z3��k4

e �z4�� + 
�k1

h��z1��k4

e �z4��
�k3

h �z3��k2

e��z2�� , �15�

has been introduced, following Ref. 39. This definition is advantageous since it leads to the explicit appearance of the
Hartree-Fock contributions to the third order coherent nonlinearities in Eq. �14� via lines 2–4. The coupling to the biexcitonic
correlation function, lines 5, 6 in Eq. �14�, determines the third order contributions beyond Hartree-Fock. Therefore, the
definition in Eq. �15� allows for an identification of effective two-particle �Hartree-Fock� and four-particle �biexcitonic� third
order contributions to the coherent dynamics of the material polarization. For the factorization of the relevant density matrix
elements in the coherent limit, see Appendix A.

The equation of motion for the biexcitonic correlation function �15�, introduced in Eq. �14�, reads

i �
�

�t
beh

e�h�
�k+q,ze,k,zh�
�k�,ze�,k�+q,zh�� = ��k+q,ze

e + �k,zh

h + �k�,ze�

e� + �k�+q,zh�

h� �beh
e�h�

�k+q,ze,k,zh�
�k�,ze�,k�+q,zh�� + �

q�

�V
q�

zh�zhbeh
e�h�

�k+q,ze,k−q�,zh�
�k�,ze�,k�+q+q�,zh��

+ V
q�

ze�zebeh
e�h�

�k+q+q�,ze,k,zh�
�k�−q�,ze�,k�+q,zh�� − V

q�

zh�ze�beh
e�h�

�k+q,ze,k,zh�
�k�+q�,ze�,k�+q+q�,zh�� − V

q�

ze�zhbeh
e�h�

�k+q,ze,k+q�,zh�
�k�+q�,ze�,k�+q,zh��

− Vq�
zhzebeh

e�h�
�k+q+q�,ze,k+q�,zh�
�k�,ze�,k�+q,zh�� − V

q�

zh�zebeh
e�h�

�k+q+q�,ze,k,zh�
�k�,ze�,k�+q+q�,zh��� + �Vq

zh�zhp�k�,ze�,zh��
e�h�

− Vq
ze�zhp�k�+q,ze�,zh��

e�h� �p�k+q,ze,zh�
eh + �Vq

ze�zep�k�+q,ze�,zh��
e�h� − Vq

zh�zep�k�,ze�,zh��
e�h� �p�k,ze,zh�

eh − �V
k−k�

zh�zh p�k�,ze�,zh�
e�h

− V
k−k�

zh�ze�p�k,ze�,zh�
e�h �p�k+q,ze,zh��

eh� − �V
k−k�

ze�ze p�k,ze�,zh�
e�h − Vk−k�

zezh p�k�,ze�,zh�
e�h �p�k�+q,ze,zh��

eh� . �16�

The discussed coupled set of equations of motion for the
excitonic polarization �14� and the biexcitonic correlation
function �16� represents a generalization of the result for the
quasi-two-dimensional quantum-well system. It additionally
includes the nonlocal space dependence of excitonic and
biexcitonic excitations36,39 for a layer with finite thickness
and allows the application of microscopic boundary condi-
tions. Equations �14� and �16� together with Maxwell’s equa-
tions �12� and �13� for the electromagnetic field represent a
microscopic theory for nonlinear polariton propagation in the
coherent limit. Both propagation effects and all third order
coherent optical nonlinearities, which are Hartree-Fock con-
tributions and biexcitonic correlations, are included.

Even the direct solution of Eq. �14� for the excitonic tran-
sition amplitude in the simpler form without optical nonlin-
earities turns out to be numerically very demanding.16 The
direct solution of Eqs. �14� and �16�, including the full biex-
citonic problem, is numerically far beyond practical possi-
bilities. However, a solution of the coupled exciton-
biexciton-light dynamics can be achieved by a transition to
the exciton eigenbasis. The expansions for the excitonic tran-
sition amplitude and the biexcitonic correlation function in
terms of exciton eigenstates of the finite-thickness layer and
the resulting equations of motion for the time dependent ex-
pansion coefficients are formulated in the next section.

B. The exciton eigenbasis

The expansion of the excitonic transition amplitude in
terms of exciton eigenstates 	m�k ,ze ,zh� yields

p�k,ze,zh�
eh �t� = �

m

pm
eh�t�	m�k,ze,zh� . �17�

In our approach the exciton eigenstates 	m�k ,ze ,zh� are di-
rectly determined for the confinement geometry, so that each

eigenstate individually fulfills the physical boundary condi-
tions of the system.5,18 The time-dependent expansion coef-
ficients pm

eh�t� are connected to the corresponding interband
transitions in the two-band model. The electron-hole one-
particle energies and the Coulomb interaction in �1� do not
depend on the z component of electron and hole angular
momenta, which are included in our notation in the band
index e, h. Therefore, spin-independent exciton eigenstates
	m�k ,ze ,zh� enter the expansion �17�.

Following the ansatz in Ref. 39, using symmetric and an-
tisymmetric linear combinations of two-exciton product
states, appropriate for the symmetry of the four-fermion
states, the expansion of the electronic singlet �
=−1� and
triplet �
= +1� configurations of the biexcitonic correlation
function takes the form40

beh
e�h�


�k4,z4,k3,z3�
�k2,z2,k1,z1��t� = �

nm

�	n��k4 + �k3,z4,z3�	m��k2

+ �k1,z2,z1� � bnm
ehe�h�
�k4 − k3,t�

− 
	n��k2 + �k3,z2,z3�	m��k4

+ �k1,z4,z1� � bnm
ehe�h�
�k2 − k3,t�� ,

�18�

with

beh
e�h�

�k4,z4,k3,z3�
�k2,z2,k1,z1� = beh

e�h�+
�k4,z4,k3,z3�
�k2,z2,k1,z1� + beh

e�h�−
�k4,z4,k3,z3�
�k2,z2,k1,z1�.

Here �=mh
* /M* and �=me

* /M* are the ratio of the hole and
the electron masses to the total exciton mass M*=me

*+mh
*. To

account for a nonvanishing in-plane center-of-mass momen-
tum for the exciton states, which is induced by the exciton-
exciton Coulomb interaction, the expansion coefficients
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bnm
ehe�h�
�q� depend on the internal excitonic quantum num-

bers n ,m and on the two-exciton relative momentum q. With
the expansion �18� for the biexcitonic correlation function,
proper antisymmetry with respect to particle interchange is
guaranteed for each term with fixed quantum numbers n, m.
This is of particular importance for the evaluations in a trun-
cated exciton basis.39 Inserting the expansions �17� and �18�
into Eqs. �14� and �16�, a somewhat lengthy but straight
forward calculation yields the closed set of equations of mo-
tion for the coefficients of the excitonic transition amplitude

i �
d

dt
pm

eh = �mpm
eh − deh� dzE�z��

k
	m

* �k,z,z�

+ �
m�ne�h�

pm�
*e�h��pn

e�h� dzedeh�E�ze�Rmm�n
1 �ze�

+ pn
eh�� dzhde�hE�zh�Rmm�n

2 �zh��
+ �

m�nn�e�h�

pm�
*e�h�pn

eh�pn�
e�hVmm�nn�

HF

+ �
ne�h�

pn
*e�h� �

qn�m�


Wn�m�mn
XX
* �q,0�bn�m�

ehe�h�
�q� ,

�19�

and for the biexcitonic correlation function

i �
d

dt
bnm

ehe�h�
�q� = �
n�m�q�

Hnmn�m�
XX
 �q,q��bn�m�

ehe�h�
�q��

+
1

2 �
n�m�rsq�

��1 − 
S�nmrs
−1 �q,q��

� Wrsn�m�
XX
 �q�,0��pn�

ehpm�
e�h� + 
pn�

e�hpm�
eh��� .

�20�

The required matrix elements are given and discussed in Ap-
pendix B. They contain the nonlocal space dependence of the
exciton and biexciton states in the spatially inhomogeneous
system. Details concerning the numerical evaluation of these
matrix elements are summarized in Appendix C. The biexci-
tonic Hamiltonian matrix Hnmn�m�

XX
 �q ,q�� determines the
spectral properties of the two-electron-two-hole states in the
system; it contains the bound biexciton state as well as the
exciton-exciton scattering continuum.

So far, calculations in the excitonic eigenbasis have been
successfully applied to quasi-two-dimensional quantum-well
systems, where experimental findings could be reproduced
and analyzed for different excitation conditions.32,33 In a
typical experimental situation, where the electronic system is
optically excited by a laser pulse with central frequency
tuned to or below the fundamental exciton resonance, only a
selected part of the excitonic spectrum provides the domi-
nant contribution to the nonlinear response of the system.
Due to the large energy separation of the excitonic ground
state from the neglected part of the spectrum, for these sys-
tems it is a meaningful approximation only to take into ac-

count the dominant 1s contribution. This way the main fea-
tures of biexcitonic correlations around the fundamental
exciton resonance41 can be included. In this approximation,
the optical properties of the system can be well described
with a finite number of exciton eigenstates in the expansions
�17� and �18�, even for a semiconductor layer with finite
thickness in the z direction.5,7

In the considered slab geometry, the low energy part of
the exciton spectrum consists of a finite number of spectrally
separated exciton states with in-plane rotation invariance �s
symmetry� and different spatial structures in the z direction.
In principle, on the level of two-electron-two-hole correla-
tions �biexcitons�, exciton-exciton Coulomb interaction
yields a coupling to energetically higher exciton states, in-
cluding exciton states having non in-plane s symmetry. Ex-
citon states, which are energetically outside the considered
spectral range for the optical excitations are neglected in this
work, including higher states with s symmetry as well as
states with non-s symmetry. In principle, the Coulomb cou-
pling to these higher exciton states may influence the biex-
citonic spectral properties even in the considered low energy
part of the spectrum. An increase of the biexciton binding
energy and additional contributions to the biexciton con-
tinuum can be expected. Nevertheless, our results clearly
demonstrate that the dominant contributions to the nonlinear
optical response can already be obtained even with a trun-
cated exciton basis, where only the lowest exciton states with
s symmetry are included.7 The higher exciton states with s
and with non-s symmetry will be more important if more
than the low energy part of the spectrum is investigated and
optically excited. In that case, contributions from higher ex-
citon states are expected to become even qualitatively impor-
tant.

For the numerical evaluation, we use the following in-
plane angular momentum decomposition of the biexcitonic
correlation function and the matrix elements in the two-
exciton product basis, following Ref. 36:

bnm
ehe�h�
�q� = �




ei
	qbnm
ehe�h�

�q� , �21�

Mnmn�m��q,q�� = �


�

ei
	qMnmn�m�


� �q,q��e−i
�	q�. �22�

Here Mnmn�m��q ,q�� represents one of the matrix elements in
the two-exciton product basis needed in the equations of mo-
tion �19� and �20�. The exciton eigenfunctions 	m�k ,ze ,zh�
are eigenfunctions to the in-plane angular momentum opera-
tor with quantum numbers 
n and 
m for the two contribut-
ing excitons in states n ,m. Taking into account the angular
momentum 
 for the two-exciton relative motion, the total
in-plane angular momentum of the two-exciton system is

tot=
+
n+
m. Due to the rotation invariance of the semi-
conductor heterostructure along the z axis, the in-plane total
angular momentum 
tot of the two-exciton system is con-

served. Consequently, the Fourier coefficients Mnmn�m�


� �q ,q��

in Eq. �22� are block diagonal for fixed 
tot. The Coulomb
coupling of exciton states with different in-plane symmetry
is neglected according to the above discussion. Then usage
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of the expansions �21� and �22� with the equation of motion
�20� yields decoupled sets of equations for the expansion

coefficients bnm
ehe�h�

�q� for fixed 
. Due to the system sym-

metry, including the in-plane homogeneity of the exciting
optical fields, the in-plane total angular momentum 
tot van-
ishes for each biexciton. Hence, the only relevant matrix el-
ements in the two-exciton product basis are given by

Mnmn�m��q,q�� = Mnmn�m�
00 �q,q��

= �
0

2� d	q�

2�
Mnmn�m��q,0,q�,	q�� �23�

and only the bnm
ehe�h�
�q�=bnm

ehe�h�

=0�q� contribution to the
biexcitonic correlation function �21� is driven. Therefore, re-
stricting the expansions �17� and �18� to in-plane s-shaped
exciton states and using all matrix elements in their angular
averaged version �23�, the projection of the equations of mo-
tion �19� and �20� to the in-plane s subspace of exciton states
is obtained.

III. RESULTS AND DISCUSSION

In Sec. III A the biexcitonic spectral properties and the
Coulomb matrix elements in the antisymmetrized two-
exciton product basis are discussed. In Sec. III B results for
nonlinear transmission spectra of a single light pulse as well
as for typical pump and probe and four-wave mixing geom-
etries are presented. The theoretical analysis of the funda-
mental physics in our model in this section is done for a
GaAs layer, surrounded by infinitely high potential barriers
in the z direction. This system is chosen here, in order to
keep the discussion of the theoretical results as simple and
expressive as possible. The application of our theory to a
ZnSe/ZnSSe heterostructure with finite-height confinement
potentials has successfully been demonstrated in Ref. 7 in a
direct theory-experiment comparison.

A. Coulomb matrix elements and the biexciton binding energy

The main purpose of our approach is to describe the fun-
damental excitonic and biexcitonic many-particle effects that
contribute to the coherent optical response of the system.
Regarding the calculated values of the biexciton binding en-
ergy, one has to keep in mind that the above discussed ap-
proximations are expected to somewhat underestimate the
result. While there are more accurate methods to calculate
the biexciton binding energy itself, we give the results of our
approach for completeness but concentrate on coherent biex-
citonic optical nonlinearities.

The exciton states in the confinement geometry are la-
beled by consecutive numbers, starting with the ground state.
The matrix elements in the two-exciton product basis are
given in Appendix B. For a fixed set of internal excitonic
quantum numbers n ,m ,n� ,m� in the two-exciton product ba-
sis, the direct and exchange Coulomb matrix elements �B1�
and �B2� can be classified by on-site �n=m=n�=m��, inter-
site diagonal �n=n� and m=m� and n�m� and off-diagonal
�n�n� or m�m�� blocks, respectively. Note that the names

“on-site” and “intersite” should not be taken literally here
since they are just used to provide a convenient classification
of the different combinations of excitonic quantum numbers
in our system by a short name; it must not be misinterpreted
as a distinction between “lattice sites” as known from tight-
binding or Hubbard models. For better comparison, energies
are normalized to the bulk exciton binding energy Eb

X�3D�
and lengths to the bulk exciton Bohr radius a0

X.
The results are discussed for typical GaAs parameters,

me
*=0.067 m0, mh

*=0.457 m0, where m0 denotes the bare
electron mass, and nbg=3.71 is the background refractive in-
dex.

Figures 2–4 show elements of the direct Wnmn�m�
C �q ,q��

and exchange Wnmn�m�
XC �q ,q�� Coulomb matrices in the two-

exciton product basis for a layer thickness of five exciton
Bohr radii. Depending on the internal exciton quantum num-
bers n ,m ,n� ,m� the direct matrix elements show qualita-
tively different shapes. Examples are depicted in the upper
parts of Figs. 2–4. For the spatially inhomogeneous system
the direct Coulomb matrix elements do not vanish in the q
→0, q�→0 limit, even not for the on-site matrix element
W0000

C �q ,q��, shown in Fig. 2. This is due to the finite layer
thickness in our system which leads to contributions from
several subbands in contradiction to the results in Ref. 36 for

FIG. 2. Examples for on-site Coulomb matrix elements. Direct
�top� and exchange �bottom� exciton-exciton interaction.
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the two-dimensional quantum-well system. Figure 3 shows
an intersite block of the direct Coulomb matrix. Figure 4
gives an example for an off-diagonal block. The two-exciton
exchange matrix elements Wnmn�m�

XC �q ,q�� show a similar
shape for all on-site and intersite matrix elements, only quan-
titative differences are obtained, see Figs. 2 and 3 for two
examples. Contributions for wave vectors with magnitude q
and q� larger than 20/a0

X can be neglected since all Coulomb
matrix elements vanish for large q and q�.

The dependence of the exciton �x� and the biexciton ���
binding energy on the layer thickness L is shown in Fig. 5.
Within our model, the biexciton binding energy Eb

XX�L� de-
pends on the number of exciton states that are included to
build the biexciton Hamiltonian matrix Hnmn�m�

XX
 �q ,q��. The
number of exciton states in the considered spectral range in
the calculations varies with the layer thickness. It is deter-
mined by the level spacing of the lowest exciton states which
is strongly influenced by the spatial confinement in the z
direction. We have one state with 1s in-plane symmetry for a
layer thickness of 1a0

X and 2a0
X, two states for 3a0

X, and three
states for 4a0

X and 5a0
X.

We encounter an increase of the absolute values of exci-
ton Eb

X�L� and biexciton Eb
XX�L� binding energies with de-

creasing layer thickness, caused by the quantum confinement
of the carriers in one dimension. The biexciton binding en-
ergy shows a slightly faster growth than the exciton binding
energy due to the larger spatial extension of the biexcitons as

FIG. 3. Examples for intersite diagonal Coulomb matrix ele-
ments. Direct �top� and exchange �bottom� exciton-exciton
interaction.

FIG. 4. Examples for off-diagonal Coulomb matrix elements.
Direct �top� and exchange �bottom� exciton-exciton interaction.

FIG. 5. Dependence of exciton Eb
X�L� and biexciton Eb

XX�L�
binding energy on the layer thickness L. The exciton binding energy
��� is given with the vertical axis on the left and ten times the
biexciton binding energy ��� is given with the vertical axis on the
right. Results are normalized to the bulk exciton binding energy
Eb

X�3D�.

COHERENT PROPAGATION OF POLARITONS IN THE… PHYSICAL REVIEW B 73, 035318 �2006�

035318-7



already observed before in Refs. 42 and 43 by means of
variational methods. The absolute value of the biexciton
binding energy might be slightly underestimated in our ap-
proach which is caused by the neglect of higher exciton
states in the eigenfunction expansion �18�. However, we find
a confirmation of Hayne’s rule:44 the biexciton binding en-
ergy is roughly 10% of the exciton binding energy. In con-
trast to Refs. 45 and 46 our results show only a slight growth
of the exciton-biexciton binding energy ratio Eb

X�L� /Eb
XX�L�

for decreasing layer thickness. It turns out that the main con-
tribution to the bound biexciton stems from the exciton
ground state; higher exciton states yield only small addi-
tional corrections, at least for the considered layer thick-
nesses. We find higher exciton states becoming more impor-
tant for the biexciton ground state with increasing layer
thickness, which is caused by the decreasing energy level
spacing in the exciton spectrum. For L=4a0

X the inclusion of
two excited excitonic states increases the biexciton binding
energy by 9.4% whereas for L=5a0

X we encounter an in-
crease of 10.5%.

The presented approach allows a full microscopic descrip-
tion of the biexcitonic correlations and circumvents a simpli-
fied evaluation in terms of a one-dimensional tight-binding
model as used in previous approaches.47,48 The discussion of
the biexciton binding energy is used here as an indicator for
the validity of our eigenfunction expansion. In conclusion,
the applied eigenfunction expansion is demonstrated to be a
meaningful approximation to incorporate the main physical
features of excitonic and biexcitonic states even beyond the
quasi-two-dimensional limit of a quantum well.

B. Nonlinear optics

In this section we present results obtained for the optical
transmission spectra of a 5a0

X GaAs layer with a dipole cou-
pling constant deh/e=5 Å. A dephasing constant �
=0.6 meV for the excitonic polarization and 2� for the biex-
citonic correlation function has been included.49 120 fs light
pulses are applied for the optical excitation which are tuned
to the lowest exciton resonance.

The solid line in Fig. 6�a� shows the calculated linear
transmission spectrum of the 5a0

X GaAs layer. The spectral
shape of the laser pulse is included as dashed line. The ex-
citation energy is given relative to the bulk band gap energy
Egap and normalized to the corresponding exciton binding
energy Eb

X. Three spectrally well separated polariton modes
are observed in the displayed part of the spectrum. They can
be attributed to the three lowest exciton states in the confine-
ment geometry and are labeled according to their 1s in-plane
symmetry and with consecutive numbers to distinguish their
spatial structure in the z direction.

The diagonalization of the biexcitonic Hamiltonian matrix
Hnmn�m�

XX
 �q ,q�� in the two-exciton product basis yields the
biexcitonic spectrum which is depicted in Fig. 6�b� for the
electronic singlet ��� and triplet �+� configuration. The dis-
crete structure of the biexcitonic spectrum on the high energy
side of the 1s ,1 polariton resonance, the exciton-exciton
scattering continuum, is a consequence of the numerical dis-
cretization of the two-exciton relative momentum q and of

the confinement of electrons and holes in the slab geometry.
However, with the finite dephasing constant for the biexci-
tonic correlations good convergency of the contributions
from the biexcitonic continuum to optical spectra is obtained.
The bound biexciton state on the low energy side of the 1s ,1
polariton resonance is found in the electronic singlet sub-
space in analogy to the Hydrogen molecule problem.

1. Single pulse propagation

As a first example we study the nonlinear transmission
spectra for a single light pulse. The evaluation is done ac-
cording to the equations of motion �19� and �20�. Restriction
of the theory to third order nonlinearities requires the linear-
ization of Eq. �19� to calculate the source terms for the third
order response. However, due to the self-consistent coupling
of material polarization and light field, also the propagating
field contains third order contributions in the field itself
which prevents the linearization of Eq. �19�. Therefore, with
the inclusion of propagation effects a rigorous restriction to
third order nonlinearities is no longer possible here. Never-
theless, a consistent description in terms of the derived ��3�

theory is obtained by self-consistent evaluation of Eqs. �19�
and �20� for sufficiently weak external fields. For a Rabi
energy of deh 	E 	 =0.01Eb

X�3D�, used in Fig. 7�b�, the nonlin-
ear contributions to the transmitted signal are less than 1% of
the linear transmission.

To visualize changes of the transmission itself in Fig. 7�a�,
an increased Rabi energy of deh 	E 	 =0.07Eb

X�3D� is neces-
sary. For this excitation intensity also higher order nonlin-
earities beyond the ��3� limit contribute to the nonlinear
transmitted signals in Fig. 7�a�. The self-consistent evalua-
tion of the equations of motion for the propagating light
fields and the material polarization readily includes parts of
the higher order nonlinearities, especially the dominant cor-
rections on the ��5� level.

FIG. 6. �a� Calculated linear transmission spectrum �depicted as
1−Tlinear� for a 5a0

X GaAs layer �solid line�, and spectral shape of
the 120 fs laser pulse �dashed line�. The polariton resonances are
labeled according to the in-plane 1s symmetry of the involved ex-
citon states and with consecutive numbers. �b� Spectral positions of
biexciton states for electronic singlet ��� and triplet �+�
configuration.
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The observed bleaching of polariton resonances in Fig. 7
results from Hartree-Fock as well as biexcitonic contribu-
tions to the nonlinear optical response. Pauli-blocking and
the mean-field contributions to the exciton-exciton Coulomb
interaction manifest on the effective two-particle level. Biex-
citonic �four-particle� correlations, which are included in the
theory presented here, yield additional important contribu-
tions. The exciton-exciton Coulomb interaction involves ex-
citon states with nonvanishing in-plane COM momentum in
the semiconductor nonlinear optical response. The resulting
broad background on the high energy side of the 1s ,1 reso-
nance is due to excitation of this exciton-exciton scattering
continuum.

An advantage of the theoretical approach applied here is
the simultaneous inclusion of the bound biexciton state and
the exciton-exciton scattering continuum. The latter is essen-
tial to reproduce the broad background on the high-energy
side of the polariton resonances in the nonlinear transmission
spectra. For circular light polarization only the biexcitonic
continuum states with electronic triplet configuration are ex-
cited whereas for linear light polarization both singlet and
triplet biexcitonic states contribute to the transmitted signal
as visualized in Fig. 8.

A transmission change spectrally below the 1s ,1 polariton
resonance at the spectral position of the bound biexciton
�bound XX� state is found for linear light polarization only.
Linearly polarized light contains both circularly polarized
components which allows the excitation of the bound biex-
citon state according to its electronic singlet symmetry as
depicted in Fig. 8. Excitation of the biexcitonic continuum is
possible with either circular or linear light polarization.

2. Pump and probe

To provide further insight into the nature of coherent non-
linear polariton saturation, we also studied excitations in a

pump and probe geometry, where two 120 fs laser pulses
�from slightly different directions� without time delay are
applied. The selection rules for both pulses are assumed to be
those for normal incidence. The probe transmission without
pump pulse and the spectral shape of both pulses are dis-
played in Fig. 6�a�. Figure 9�a� shows changes in the probe-
pulse transmission that are induced by the pump pulse for
opposite circular e+e− �solid line� and cocircular e+e+
�dashed-dotted line� polarization of pump and probe pulses.
The probe pulse enters the excitonic polarization in linear
order only. For the pump pulse a Rabi energy deh 	Epump 	
=0.01EB

X is used. The transmission changes around the

FIG. 7. �a� The dotted line shows the linear transmission spec-
trum for a 5a0

X GaAs layer �same as solid line in Fig. 6�a��. Non-
linear transmission spectra for linear �solid line� and circular
�dashed line� light polarization are included for a Rabi energy
deh 	E 	 =0.07Eb

X. �b� Differential single pulse transmission spectra
for linear �solid line� and circular �dashed line� light polarization,
corresponding to �a� but for a Rabi energy deh 	E 	 =0.01Eb

X.

FIG. 8. Schematic illustration of the excitation energies and se-
lection rules for optical excitation of excitons and biexcitons.

FIG. 9. �a� Differential probe transmission for opposite circular
e+e− configuration �solid line� and cocircular e+e+ configuration
�dashed-dotted line�. �b� Differential probe transmission for e+e−

configuration including all Coulomb terms �solid line, same as solid
line in �a� and �c��, and diagonal Coulomb interaction with respect
to the internal exciton quantum numbers in the two-exciton product
basis �dashed line�. �c� No Coulomb interaction of different exci-
tons �dashed line�.

COHERENT PROPAGATION OF POLARITONS IN THE… PHYSICAL REVIEW B 73, 035318 �2006�

035318-9



higher �1s ,2 and 1s ,3� polariton resonances in Fig. 9�a� are
similar to those around the lowest one �1s ,1� but with a
decreased amplitude. In the e+e− configuration the excitation
of the bound biexciton resonance yields a line shape for the
probe transmission changes which corresponds to a redshift
of the 1s ,1 polariton resonance. For the e+e+configuration a
clear blueshift is observed for the 1s ,1 polariton resonance.
A similar dependence on the light polarization has been re-
ported for the differential probe absorption around the 1s
exciton resonance in a QW system.29

For opposite-circular e+e− polarization, the pump-induced
changes in the probe transmission are exclusively determined
by biexcitonic correlations;29 no mean-field effects contrib-
ute. On the Hartree-Fock level there would be no coupling of
the different transition channels excited with e+ and e− light
polarization. This configuration is chosen for the analysis of
the Coulomb interaction between polaritons in states with
different spatial distribution.

As introduced in Sec. III A, we use again the classifica-
tion of the Coulomb matrix elements �B1� and �B2� by on-
site, intersite diagonal, and off-diagonal blocks. Figure 9�b�
shows the probe transmission change for a calculation with
all Coulomb terms turned on �solid line�, and without off-
diagonal elements �dashed line�. While the qualitative shape
of transmission changes is only slightly influenced by the
off-diagonal terms, they lead to an increase of the biexciton
binding energy by about 10%. Off-diagonal contributions be-
come more important for increasing layer thickness where
the energetical spacing of excitonic states decreases and the
excited states play a more important role, even for the biex-
citon ground state.

The dashed line in Fig. 9�c� shows the result where Cou-
lomb interaction that couples different exciton states in the
two-exciton product basis of Eq. �18� is completely switched
off. We encounter only a slight change of the transmission
changes around the lowest polariton resonance �1s ,1�
whereas for higher peaks �1s ,2 and 1s ,3� the influence of
the pump pulse almost vanishes. The neglect of both off-
diagonal terms and inter-site diagonal elements prevents the
formation of biexciton states by interaction of excitons in
different states.

Thinking in a simplified exciton picture these results lead
to the following conclusion: The transmission changes
around the �1s ,1� resonance are dominated by contributions
from �1s ,1��1s ,1� biexcitons, namely biexcitons built up
from two �1s ,1� excitons. However, the transmission
changes around the higher resonances are dominated by con-
tributions from �1s ,1��1s ,2 or 3� biexcitons. We only find a
small contribution from biexcitons solely built up of excited
excitons because of the weak oscillator strength of the con-
nected exciton states. As a result, Coulomb interaction of
excitons in states with different spatial distribution �corre-
sponding to different polariton resonances� turns out to be
the main source for transmission changes of higher polariton
states.

3. Four-wave mixing

The evaluation of four-wave mixing signals in this section
is based on the equations of motion for the third order ma-

terial polarization, Eqs. �17� and �18�. Two 120 fs laser
pulses are applied �from slightly different directions k1 and
k2� with the spectral shape which is depicted in Fig. 6�a�.
Again the dipole selection rules are assumed to be those for
normal incidence. The diffracted four-wave mixing signal is
observed in the 2k2−k1 direction and is exclusively sensitive
to third order nonlinearities in the optically induced material
polarization. It is not superimposed by a linear background
transmission of one of the incoming pulses. For the laser
pulse in k2 direction a Rabi energy of deh 	E 	 =0.01Eb

X is
used to ensure a consistent evaluation within our ��3� theory.
Results are presented for the GaAs model system with a
layer thickness of 5a0

X as in the previous sections. To give a
comparison to a quasi-two-dimensional quantum-well sys-
tem, results are also shown for a layer thickness of 1a0

X.
Four-wave mixing signals are analyzed as a function of the
delay time tdel between the two incoming light pulses for
different polarization states of the fields. The detection is
assumed to be insensitive to the polarization state of the
diffracted signal in 2k2−k1 direction.

The calculated spectrally resolved four-wave mixing sig-
nal is shown in Fig. 10 for cocircular e+e+ polarization of the
two incident light pulses, in Fig. 11 for colinear exex polar-
ization, and in Fig. 12 for cross-linear exey polarization, re-
spectively. The magnitude of the four-wave mixing intensity
is visualized by the color coding on a logarithmic scale. In
the upper part of each figure, the result for 5a0

X layer thick-
ness is depicted and in the lower part the corresponding re-
sult for the quantum-well system with 1a0

X layer thickness is
shown.

For the 5a0
X system, both pulses are centered at an exci-

tation energy of −0.6 in excitonic units as given at the hori-
zontal axis of Fig. 6. The energies of the excitonic reso-
nances for the quantum well with 1a0

X thickness are shifted
to higher values due to the confinement of the carrier motion
in the z direction. Therefore, for this system, the pulses are
centered on the spectral position of the exciton resonance at
7.71 in excitonic units.

For the 5a0
X sample and all three configurations, a four-

wave mixing signal is detected at the spectral position of the
three polariton resonances which are visible in the linear
transmission spectrum of Fig. 6�a�. Qualitatively, around the
spectral position of the lowest polariton resonance a similar
polarization dependence of the four-wave mixing signal is
observed as it is found for the 1a0

X quantum-well system: �i�
For the e+e+ configuration in Fig. 10 no resonant contribution
to the signal is detected at the spectral position of the bound
biexciton state, according to its electronic singlet configura-
tion as already discussed in the previous sections. A fast
decay of the signal for negative delay times tdel�0 is found.
�ii� For the exex configuration in Fig. 11 the signal is domi-
nated by contributions at the spectral positions of the polar-
iton resonances while the signal at the spectral position of
the bound biexciton resonance is weak in this configuration.
�iii� For the exey configuration in Fig. 12 a resonant contri-
bution to the four-wave mixing signal is visible at the spec-
tral position of the bound biexciton resonance spectrally
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below the lowest polariton resonance. This feature is much
more pronounced for the 1a0

X system because of the larger
biexciton binding energy and the smaller spectral window
which is displayed in the figures. However, comparing Figs.
11 and 12, also for the 5a0

X system a qualitative difference in
the four-wave mixing signals spectrally below the lowest po-
lariton resonance is visible. It can be attributed to the exci-
tation of the bound biexciton resonance. A similar polariza-
tion dependence of four-wave mixing signals has
experimentally and theoretically been observed for a ZnSe
quantum-well system in Refs. 50 and 51.

For the system with 5a0
X layer thickness we find that the

detected signal at the spectral position of each polariton reso-
nance is strongly influenced by the excitation of the other
resonances. In the displayed spectral range the signal is pe-
riodically modulated in the delay time tdelay. These oscilla-
tions are absent for the quantum-well system since only a
single excitonic resonance contributes to the four-wave mix-
ing signal. The periods of the oscillations are determined by
the energy separation of the different polariton resonances.
Two main contributions to these oscillations can be attributed
to the larger energy difference between first and third polar-
iton resonance and to the smaller energy difference between
first and second or second and third resonance, respectively.
Oscillations have also been observed in QW systems due to
the interference of contributions from exciton and biexciton
at higher excitation conditions.33,51 In our case, the signal at
higher polariton resonances is influenced by the scattering
continuum of the lower resonances. It should be noted that
an interpretation in terms of independent polariton reso-
nances is not valid beyond the quantum-well limit since a

FIG. 10. �Color online� Top: Contour plot of the spectrally re-
solved four-wave mixing intensity in cocircular e+e+ configuration
as a function of the delay time tdelay between the two incoming light
pulses for a GaAs layer with thickness of 5a0

X. The color coding
represents the four-wave mixing intensity in arbitrary units on a
logarithmic scale according to the color bar. The energy scale on the
vertical axis is chosen in excitonic units according to the horizontal
axis in Fig. 6. Bottom: Same as upper part but for a quantum well
with layer thickness of 1a0

X.

FIG. 11. �Color online� Same as Fig. 10 but for colinear exex

polarization of the two incoming light pulses.
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strong interaction of the contributions from different polar-
iton resonances over the whole spectral range is observed.

IV. CONCLUSION

A theory for the nonlinear polariton dynamics in semicon-
ductor heterostructures has been presented which consis-
tently includes �i� propagation effects with microscopic
boundary conditions for the induced material polarization as
well as for the optical fields and �ii� excitonic and biexcitonic
coherent nonlinearities previously studied only in QWs or
one-dimensional model systems. The numerically extremely
demanding theory has been evaluated by an efficient expan-
sion of excitonic polarization and biexcitonic correlation
function in terms of excitonic eigenstates of the slab geom-
etry. As an important indicator for a proper description of
biexcitonic correlations within this approach, the biexcitonic
spectral properties have been investigated in detail. Espe-

cially, the dependence of the biexciton binding energy on the
layer thickness has been discussed. The influence of light-
polarization dependent excitonic and biexcitonic nonlineari-
ties has been demonstrated and analyzed in detail for the
propagation of a single light pulse as well as in typical pump
and probe and four-wave mixing geometries. For the hetero-
structures investigated in this work with layer thicknesses
beyond the quasi-two-dimensional quantum-well limit, the
Coulomb interaction of polariton states with different spatial
distribution has been shown to strongly influence nonlinear
optical transmission spectra.
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APPENDIX A: DYNAMICS-CONTROLLED TRUNCATION

In this section we provide the relations for the dynamics-
controlled truncation of density matrix elements in the coher-
ent ��3� limit which are used to deduce the equations of mo-
tion �14� and �16� along the lines described in Ref. 39.

The occupation functions up to third order in the optical
field in the coherent limit are


�k
e�†�zh��k

e�ze�� � �
h
� dzp�k,zh,z�

*e�h p�k,ze,z�
eh �A1�

for the conduction band and


�k
h�†�ze��k

h�zh�� � �
e
� dzp�k,z,ze�

*eh� p�k,z,zh�
eh �A2�

for the valence band. The four-point functions, which appear
in the equation of motion for the excitonic polarization up to
third order in the external fields, are the electron-assisted
transition amplitude


�k1

e�†�z��k2

e��z��k3

h �zh��k4

e �ze��

� �
h�
� dz�p�k1,z,z��

*e�h� 
�k1

h��z���k2

e��z��k3

h �zh��k4

e �ze�� ,

�A3�

and the hole-assisted transition amplitude


�k1

h�†�z��k2

h��z��k3

h �zh��k4

e �ze��

� �
e�
� dz�p�k1,z�,z�

*e�h� 
�k2

h��z��k1

e��z���k3

h �zh��k4

e �ze�� ,

�A4�

which are given here in the coherent limit.

APPENDIX B: MATRIX ELEMENTS

With q+=q+q� and q−=q−q� the Coulomb matrix ele-
ments in the two-exciton product basis are given by

FIG. 12. �Color online� Same as Fig. 10 but for cross-linear exey

polarization of the two incoming light pulses.

S. SCHUMACHER, G. CZYCHOLL, AND F. JAHNKE PHYSICAL REVIEW B 73, 035318 �2006�

035318-12



Wnmn�m�
C �q,q�� = �

kk�
� dzedzhdze�dzh�	n

*�k,ze,zh�	m
* �k�,ze�,zh���Vq−

zh�zh	n��k + �q−,ze,zh�	m��k� − �q−,ze�,zh��

+ V
q−
ze�ze	n��k − �q−,ze,zh�	m��k� + �q−,ze�,zh�� − V

q−
ze�zh	n��k + �q−,ze,zh�	m��k� + �q−,ze�,zh��

− V
q−
zh�ze	n��k − �q−,ze,zh�	m��k� − �q−,ze�,zh��� , �B1�

for the direct part, and

Wnmn�m�
XC �q,q�� = �

kk�
� dzedzhdze�dzh�	n

*�k + �q−,ze,zh�	m
* �k� + �q+,ze�,zh���	n��k�,ze�,zh��Vk−k�

zezh 	m��k� + �q− + �q+,ze,zh��

− V
k−k�

zh�zh	m��k + �q− + �q+,ze,zh��� + 	n��k,ze�,zh��V
k−k�

zh�ze�	m��k + �q− + �q+,ze,zh��

− V
k−k�

zeze� 	m��k� + �q− + �q+,ze,zh���� �B2�

for the two-exciton exchange interaction. The biexcitonic
Hamiltonian matrix in this basis has the form

Hnmn�m�
XX
 �q,q�� = ��n�q� + �m�q���nn��mm��qq�

+ �
rsk

�1 − 
S�nmrs
−1 �q,k�Wrsn�m�

XX
 �k,q�� ,

�B3�

using

Wnmn�m�
XX
 �q,q�� = Wnmn�m�

C �q,q�� + 
 · Wnmn�m�
XC �q,q��

�B4�

and the exciton overlap matrix elements

Snmn�m��q,q�� = �
k
� dzedzhdze�dzh�

�	n
*�k + �q,ze,zh�	m

* �k + q� + �q,ze�,zh��

�	n��k + �q�,ze�,zh�

�	m��k + q + �q�,ze,zh�� . �B5�

The Hartree-Fock Coulomb matrix elements are obtained
from the q→0, q�→0 limit of the two-exciton exchange
matrix elements �B2�:

Vmm�nn�
HF = Wn�nmm�

XC* �0,0� . �B6�

The Hartree-Fock matrix elements for the phase-space filling
corrections �Pauli blocking� to the Rabi energy are

Rmm�n
1 �z� = �

k
� dz�dz�	m

* �k,z,z��	m��k,z�,z�	n�k,z�,z��

�B7�

and

Rmm�n
2 �z� = �

k
� dz�dz�	m

* �k,z�,z�	m��k,z,z��	n�k,z�,z�� .

�B8�

Expansion of the real space dependence of the exact exciton
eigenfunctions 	m�k ,ze ,zh� in terms of products of one-
particle eigenstates in the z direction

	m�k,ze,zh� = �
ij

aij
m�k��i�ze�� j�zh� , �B9�

yields a multisubband version of the matrix elements �B1� to
�B8�. In the one-subband limit and for identical one-particle
envelope wave functions �i�ze� and � j�zh� for electrons and
holes, respectively, the theory for the two-dimensional or
one-subband quantum well36 is reproduced with a00

m �k� being
the two-dimensional in-plane exciton wave function.

APPENDIX C: NUMERICS

The evaluation of the Coulomb matrix elements in the
two-exciton product basis turns out to be numerically very
demanding. Especially parts of the exchange interaction ma-
trix element �B2� with its fourfold real space integral cannot
be factorized. Of particular importance is a proper treatment
of the Coulomb singularity in Wnmn�m�

C �q ,q�� and
Wnmn�m�

XC �q ,q�� which has been removed numerically. The
independent calculations of the matrix elements can be per-
formed efficiently on parallel computers. Once evaluated, the
matrix elements can be stored for each given set of material
parameters. Using this input data the solution of the equa-
tions of motion can be performed on a desktop computer,
using a fourth order Runge-Kutta algorithm for the material
equations �19� and �20� and Hartree’s method for the dis-
cretization of Maxwell’s equations �12� and �13�. The solu-
tions are obtained in the time domain in the rotating wave
picture to eliminate the large band gap energy in the material
equations. Details concerning Hartree’s method are given in
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Ref. 52 and their application to the one-dimensional Max-
well equations is briefly summarized in Ref. 16.

For a proper evaluation of the matrix elements the nu-
merical discretization scheme of real space coordinates and
in-plane momenta has to be chosen very carefully. We use
Gaussian quadrature points for the calculation of k-space in-
tegrals, which provide much better numerical convergence
with a small number of quadrature points, compared to an
equidistantly chosen grid. For the exciton wave functions we

typically used a real space step size of �0.1a0
X and 70

Gaussian k quadrature points accumulated below k=20/a0
X.

Biexciton grid points where chosen to 16 angle points, 32
Gaussian q and k quadrature points and 24 equidistant points
for real space integrals. Contributions from in plane mo-
menta k with k�20/a0

X are neglected in a very good ap-
proximation because wave functions and Coulomb matrix
elements rapidly decay for large momenta, as can be seen in
Figs. 2–4.
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