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Polariton effects in the optical spectra of thin semiconductor samples are analyzed within a micro-
scopic theory based on a direct solution of the Schrödinger equation for the exciton motion in a
finite sample. Various numerical schemes for the solution of the Schrödinger equation are dis-
cussed. Results are compared with the Pekar model augmented by phenomenologically introduced
dead-layers at the surfaces. While the dead-layer is an unknown input parameter for macroscopic
models based on additional boundary conditions, the microscopic theory can be used to determine
the dead-layer thickness. Results are presented for various material systems. Furthermore the non-
local excitonic susceptibility calculated within the microscopic theory in the frequency domain is
presented.

1. Introduction Since the introduction of the polariton concept the interaction of a
propagating light field with the excitonic polarization of bulk semiconductors or hetero-
structures has been the subject of intense experimental and theoretical research. Under
realistic conditions, the presence of surfaces and the finite sample thickness can strongly
modify excitonic properties due to the non-negligible spatial extension of the Coulomb
bound electron–hole states. Near the surfaces, the semiconductor response function
deviates strongly from that of the infinitely extended medium. The finite sample thick-
ness leads to additional resonances in the optical spectra due to the interference of
propagating polariton modes.
Our investigations are based on a microscopic theory [1, 2] where the excitonic polar-

ization follows from a direct solution of the time dependent two-particle Schrödinger
equation for the nonlocal excitonic transition amplitude of the spatially inhomogeneous
system. Surface effects are included via microscopic boundary conditions for the exci-
tonic transition amplitude. As an alternative approach to the scheme presented in Refs.
[1] and [2] we start our calculations from an excitonic transition amplitude expressed in
terms of the excitonic eigenstates calculated under microscopic boundary conditions.
The propagating light field is directly computed from the Maxwell equations which are
self consistently solved together with the inhomogeneous exciton equation. Our micro-
scopic theory avoids so-called additional boundary conditions (ABC) which are neces-
sary if one approximates the spatially nonhomogeneous and nonlocal excitonic polariza-
tion with that of the infinitely extended bulk material [3–5].
The confinement of excitons to a finite volume leads necessarily to a nonlocal optical

susceptibility. In this contribution we analyze the nonlocal excitonic susceptibility for line-
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ar optical phenomena in a semiconductor layer by means of frequency-domain calcula-
tions including microscopic boundary conditions. The finite spatial extension of the exci-
ton leads to polarization-free dead-layers near the surfaces. To improve the macroscopic
models these dead-layers have been phenomenologically included as an additional para-
meter. However, our microscopic calculation shows that the dead-layer is different for
various resonances of a single optical spectrum. As discussed below, this leads to clear
deviations between the results of macroscopic models and microscopic calculations.
In Ref. [2] a situation has been analyzed where the experimentally observed transmis-

sion spectra of a high-quality 0.25 mm GaAs layer cannot be described in terms of ABC
models. In this contribution we extend these investigations systematically to other mate-
rial systems and determine the extension of the polarization free regions near the sur-
faces under various conditions from the microscopic theory.

2. Linear Light Propagation in Semiconductors When a light field propagates through
a bulk semiconductor, a macroscopic polarization P is induced which can be ex-
pressed in terms of the electron–hole transition amplitude w and the dipole matrix
element dcv by

Pðr; tÞ ¼
Ð
d3q d*cvwðre; rh; tÞ ; ð1Þ

where r ¼ ðre þ rhÞ=2 and q ¼ re � rh are the sum and difference of the electron and
hole coordinates, and the integration runs over the extension of the sample. For linear
light propagation and in the effective-mass approximation the electron–hole transition
amplitude obeys a two particle Schrödinger equation (inhomogenous exciton equation)
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wðre; rh; tÞ ¼ �dcvðqÞ Eðr; tÞ ;

ð2Þ

where V is the Coulomb interaction between electron and hole, Eg is the gap
energy, m*e;h are the effective electron and hole masses, and the driving term is
due to the propagating electromagnetic field E.
In this paper we consider a slab geometry (Fig. 1) where the electromagnetic

field is a plane wave propagating in z-direction and the semiconductor sample is
bounded by two surfaces perpendicular to the z-axis but extends homogeneously in
the x–y-plane.
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Fig. 1. Slab geometry. The electromagnetic field is propagat-
ing in z-direction and the semiconductor sample is bounded
by two surfaces perpendicular to the z-axis but extends homo-
geneously in the x–y-plane



In the x–y-plane a separation of the electron–hole motion into relative and center-
of-mass (COM) motion is still possible for each in-plane COM momentum q?,

wq?
ðre; rh; tÞ ¼ wðre? � rh?; ze; zh; tÞ eiðq?R?�wq? tÞ ¼ wðq?; ze; zh; tÞ eiðq?R?�wq? tÞ ;

ð3Þ

where q? andR? are the in-plane relative and COM coordiantes, respectively. For the cho-
sen geometry the in-plane COMmomentum q? vanishes and only the q? ¼ 0 part, denoted
by wðq?; ze; zh; tÞ, contributes. Furthermore it is useful to Fourier transform the in-plane
relative coordinates and to introduce the in-plane relative momentum k? according to

wðk?; ze; zh; tÞ ¼
ð
d2q? eik?q?wðq?; ze; zh; tÞ : ð4Þ

For rotational invariance around the direction of propagation w only depends on the
modulus of the wave vector in the x–y-plane denoted by k?, and the equation of mo-
tion for the electron–hole transition amplitude takes the form
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� dcvEðz; tÞ dðze � zhÞ : ð5Þ
The Coulomb matrix elements

Vðk?; k0?; jze � zhjÞ ¼
e2

8p2e0n2bg

ð2p
0

df?
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with jk? � k0?j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2? þ k02? � 2k?k0? cos f?

q
contain the angle f? between k? and k0?,

nbg ¼
ffiffiffiffiffiffi
ebg

p
is the background refractive index, and g is a phenomenological damping

constant. We use the standard approximation of a momentum-independent dipole ma-
trix element which corresponds to a delta-like space dependence in real-space formula-
tion, dcvðze � zhÞ ¼ dcvdðze � zhÞ.
The solution of Eq. (5) is uniquely determined by microscopic boundary conditions.

For a finite sample the excitonic transition amplitude vanishes if either electron or hole
reaches the medium’s surface at z1 or z2

0 ¼ wðk?; ze ¼ z1; zh; tÞ ¼ wðk?; ze ¼ z2; zh; tÞ ¼ wðk?; ze; zh ¼ z1; tÞ
¼ wðk?; ze; zh ¼ z2; tÞ: ð7Þ

The evolution of the electromagnetic field is determined by the Maxwell equations
which, for circularly polarized transverse fields propagating in z-direction,

Eðr; tÞ ¼ Eðz; tÞ eþ and Bðr; tÞ ¼ Bðz; tÞ ieþ with eþ ¼ 1ffiffiffi
2
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where nðzÞ is the nonresonant (background) refractive index profile along the propaga-
tion direction. Within a homogeneous slab we have nðzÞ ¼ nbg. The source term in Eq.
(8) couples the electromagnetic field to the macroscopic polarization Pðr; tÞ ¼ Pðz; tÞeþ.
The latter can be expressed in terms of the transition amplitude as

Pðz; tÞ ¼ 1
2p

ð1
0

dk? k?d*cvwðk?; z; z; tÞ ð10Þ

with the help of Eqs. (1) and (4). In Eq. (10) we have again used a local dipole matrix
element. Within the microscopic theory it is now possible to calculate the propagation
of an electromagnetic light field through a thin semiconductor sample by selfconsis-
tently solving the coupled set of Eqs. (5), (8–10). In the following we present a method
to reduce the numerical effort for the calculation of the time evolution of Eq. (5).
The inhomogeneous exciton equation has the formal structure

i�h
@

@t
wðk?; ze; zh; tÞ ¼ Hwðk?; ze; zh; tÞ � dcvEðz; tÞ dðze � zhÞ ; ð11Þ

where H denotes the electron–hole Hamiltonian. We can expand the excitonic transi-
tion amplitude wðk?; ze; zh; tÞ into excitonic eigenstates wmðk?; ze; zhÞ within the semi-
conductor slab under the boundary conditions (7) according to

wðk?; ze; zh; tÞ ¼
P
m

amðtÞ wmðk?; ze; zhÞ : ð12Þ

Inserting this expansion into the exciton Eq. (5) leads to

i�h
@

@t

P
m

amðtÞ wmðk?; ze; zhÞ ¼
P
m
ðem � igÞ amðtÞ wmðk?; ze; zhÞ
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where em are the eigenenergies corresponding to wmðk?; ze; zhÞ and g is a phenomeno-
logical damping constant. The orthonormality for the excitonic eigenstates
wmðk?; ze; zhÞ yields
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To calculate the time evolution of the excitonic transition amplitude we have to solve
an ordinary differential equation in time for each coefficient amðtÞ, where the driving
terms are due to the projection of the electric field on the mth eigenstate of the system.
The macroscopic polarization (10) expressed in terms of eigenstates with time depen-
dent coefficients is

Pðz; tÞ ¼ 1
2p

P
m

amðtÞ
ð1
0

dk? k?d*cvwmðk?; z; zÞ : ð15Þ

Once we have calculated the excitonic eigenvalues and eigenstates for the slab geome-
try, it is only necessary to calculate the time evolution for the coefficients amðtÞ to de-
scribe the behaviour of the medium coupled to an external electromagnetic field. The
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Maxwell equations (8) and (9) can be solved as discussed in [2]. If we limit our calcula-
tions to the bound states of the system, it is sufficient to consider only the first few
energetically lowest states. Within this approximation we are only left with a small num-
ber of ordinary differential equations for a finite number of coefficients amðtÞ. This
approach nearly perfectly reproduces the results of the direct solution of Eq. (5) for the
considered states if the corresponding eigenenergies are well separated from the ne-
glected part of the spectrum. In Fig. 2 we show a comparison of a GaAs transmission
spectrum obtained by a full solution of the discretized exciton Eq. (5) and a spectrum
where only seven exciton eigenstates have been considered. For GaAs we use the fol-
lowing material parameters: m*e ¼ 0:067m0, m*h ¼ 0:457m0, nbg ¼ 3:71, Eg ¼ 1:42 eV,
rcv ¼ 0:5 nm, g ¼ 0:04 meV. Here nbg is the background refractive index, g is a damp-
ing constant, and rcv is related to the dipole coupling constant dcv ¼ ercv. The numerical
effort of the eigenfunction expansion is reduced by more than one order of magnitude
in comparison to the full solution.

3. A Closer Look at the ABC Problem In the last section we presented a theory to
describe the propagation of electromagnetic fields through a semiconductor sample in the
presence of boundaries which influence the exciton motion. In this approach the numeri-
cal complexity results from the coupling of the excitonic relative and COM motion. In the
past, several approaches have been proposed based on an approximate decoupling of the
excitonic relative and COM motion. However in the inhomogeneous case one cannot
deduce independent boundary conditions for the relative and COM wave functions. For
comparison with our full calculations we now outline briefly approximate treatments
based on the dielectric theory of polaritons propagating in homogeneous media.
Taking into account only the interaction with the 1s-exciton resonance, one uses the

two complex polariton wave vectors q1;2ðwÞ describing the propagation of an optical
field in the infinite system as an ansatz for the propagating electromagnetic field inside
a finite semiconductor sample

Ematðz;wÞ ¼
P

p¼1;2
Eþ

p ðwÞ eiqpðwÞ z þ E�
p ðwÞ e�iqpðwÞz

h i
: ð16Þ
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Here propagating and counter-propagating waves are considered for the slab geometry.
Then the Maxwell boundary conditions are applied to connect the field inside the slab
to free solutions of the Maxwell equations outside the sample. The simplest possible
geometry involves an incident wave from the left and the reflected and transmitted
components, Er and Et, with wave vectors qleft ¼ nleftw=c0 and qright ¼ nrightw=c0,

Eleftðz;wÞ ¼ eiqleftz þ ErðwÞ e�iqleftz; Erightðz;wÞ ¼ EtðwÞ eiqrightz : ð17Þ

The continuity of E and @E=@z on both boundaries determines only four of the six
unknown coefficients ErðwÞ, EtðwÞ, E�

1 ðwÞ, E�
2 ðwÞ. The remaining two conditions are

obtained by using additional boundary conditions (ABC) for the macroscopic polariza-
tion of the system. Pekar’s ABC [3] require a vanishing macroscopic polarization at the
sample surfaces,

Pðw; z1Þ ¼ Pðw; z2Þ ¼ 0 : ð18Þ

For a discussion of other ABC, see [2, 5, 6]. With Eq. (18), the two remaining unknown
coefficients can be uniquely determined from the macroscopic polarization, given by

Pðw; zÞ ¼
P

p¼1;2
cðq;wÞjq¼qpðwÞ Eþ

p ðwÞ eiqpðwÞ z þ E�
p ðwÞ e�iqpðwÞ z

h i
; ð19Þ

where cðq;wÞ is the susceptibility of the infinitely extended bulk material.

4. Nonlocal Susceptibility In the previous section we presented an approximation
using a local susceptibility cðq;wÞ for the optical excitation of excitons which only de-
pends on the COM momentum q of the exciton. In general the absence of translational
symmetry in the z-direction for the discussed slab geometry results in a nonlocal sus-
ceptibility depending on two space coordinates. This susceptibility is defined by the
formula for the macroscopic polarization induced by an electromagnetic field,

Pðz;wÞ ¼
Ð
dz0 Eðz0;wÞ cðz; z0;wÞ : ð20Þ

The frequency dependent, nonlocal susceptibility can be calculated within the micro-
scopic theory from the excitonic eigenstates wmðk?; ze; zhÞ and the corresponding eigen-
energies em,

cðz; z0;wÞ ¼ � jdcvj2

ð2pÞ2
P
m

ð
dk? dk0?

w*mðk0?; z0; z0Þ wmðk?; z; zÞ
�hwþ ig� em

: ð21Þ

This result can be deduced from the general linear response theory, or by solving the
inhomogeneous exciton equation in the frequency domain with the eigenfunction expan-
sion of the excitonic transition amplitude. Figure 3 displays the space dependence of the
imaginary (top) and real (bottom) part of the nonlocal susceptibility for the lowest three
resonance peaks in Fig. 2. The imaginary part exhibits standing wave like structures due
to the boundary conditions (7) at the surfaces of the semiconductor slab. In a simplified
picture these structures can be interpreted as a quantization of the exciton COM motion.
In the following we will have a closer look at the validity of such a simplified model where
the exciton is treated as a point-like particle without spatial extension.
Using the nonlocal susceptibility (21) an alternative way for the calculation of opti-

cal spectra is the selfconsistent solution of the inhomogeneous wave equation for the
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electric field
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c20
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Eðz;wÞ ¼ � w2

e0c20

ð
dz0 cðz; z0;wÞ Eðz0;wÞ ð22Þ

in frequency domain, leading to the same results as the time-dependent calculations
presented in the first section.

5. Introduction of the Dead-Layer Concept The solid line in Fig. 4 shows the calcu-
lated transmission spectrum of a GaAs sample with a thickness of 125 nm which is
equivalent to 10ax0 where ax0 is the exciton Bohr radius. The corresponding space depen-
dence of the macroscopic polarization for various frequency components of the spec-
trum can be obtained from a solution of the microscopic theory for stationary, mono-
chromatic excitation of the sample. For excitation frequencies corresponding to the
resonances in Fig. 4 (solid line), which are consecutively labeled by n, results are given
in Fig. 5.
The polarization exhibits standing-wave like states within the slab which corre-

sponds to the naive picture of a COM quantization of the exciton movement in
z-direction, but with an effectively decreased sample thickness. Obviously, the system
contains surface layers with negligible macroscopic polarization of the semiconductor
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due to the finite spatial extension of the exciton as a Coulomb bound state of elec-
tron and hole. The situation is further complicated by the fact that the thickness of
these layers differs for various resonance frequencies.
When Pekar’s ABC are used to calculate optical spectra, the boundary conditions are

only imposed on the COM motion within the slab, leading to discrete energies

En ¼ Ex
b þ

�h2p2

2M*
n2

L2
. The corresponding transmission spectrum is shown as a dotted line

in Fig. 4. To include the finite spatial extension of the excitonic states in this picture in
an approximative way one additionally assumes dead-layers of length d at the surfaces
of the sample. Using the results of the microscopic theory displayed in Fig. 4, we esti-
mate for the n ¼ 1 resonance an effective sample thickness Leff = L� 2d = 7.2ax0.
The result of a calculation with Pekar’s ABC using the dead-layer determined for the

first resonance n ¼ 1 is shown as dashed line in Fig. 4. The structure of the double-peak
main resonance is nearly reproduced, but the energetic positions of the excitonic higher
replicas are shifted to higher energies in comparison to the microscopic spectrum, since the
higher polariton modes showmuch smaller dead-layers than the main resonance, see Fig. 5.

6. Various Material Systems To extend the results discussed above to other material
systems, we show in Figs. 6 and 7 calculated transmission spectra for CdTe and ZnSe,
respectively. We chose again sample thicknesses of 10ax0 for the calculations correspond-
ing to 66 nm for the heavy-hole exciton in CdTe and to 34 nm for the heavy-hole exci-
ton in ZnSe. The microscopic calculations are compared to Pekar’s ABC, where for the
latter the dead-layer was chosen to best fit the main resonances of the microscopic
spectra. For the calculations the following material parameters were used:
m*e ¼ 0:087m0, m*hh ¼ 0:601m0, nbg ¼ 3:11, Eg ¼ 1:595 eV, rcv ¼ 0:43 nm, g ¼ 0:12 meV,
(CdTe), m*e ¼ 0:16m0, m*hh ¼ 0:78m0, nbg ¼ 2:95, Eg ¼ 2:85 eV, rcv ¼ 0:15 nm,
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g ¼ 0:32 meV, (ZnSe). We find a similar behaviour as in the GaAs material system.
The first two resonances of the microscopic calculation can be fitted within the ABC
model with properly chosen dead-layer. Then, however, the energetic position as well
as the height of the higher resonances are not well reproduced.

7. Dependence of the Dead-Layer on the Reduced Exciton Mass Having introduced
the dead-layer as a phenomenological parameter for augmenting Pekar’s ABC, we
would like to use the microscopic model to systematically determine the influence of
material parameters and excitation frequency on the dead-layer thickness. The motion
of electron and hole relative to the excitonic COM coordinate is characterized by the
reduced exciton mass m* normalized to the total exciton mass M*, as it is already clear
from the naive picture of electron and hole treated as rigid balls, see Fig. 8. If the
electron and hole masses are approximately the same, the COM is in the center be-
tween electron and hole, and as the electron–hole transition amplitude must vanish at
the surface, the COM can approach the surface up to half an exciton Bohr radius. If
the hole is much heavier than the electron, the COM is approximately at the hole posi-
tion, and as the electron–hole transition amplitude must vanish at the surface, the
COM distance to the surface would be at least one exciton Bohr radius.
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(thin line)
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For a general discussion of this behaviour we investigate the dependence of the
dead-layer thickness on the reduced exciton mass normalized to the total exciton mass
m*=M*. The limiting cases of equal electron–hole masses and infinitely heavy holes
correspond to m*=M* ¼ 1=4 and m*=M* ¼ 0, respectively. Recent investigations of the
dead-layer in [7] have been based on an approximate decoupling of the exciton relative
and COM motion by using a Born–Oppenheimer procedure for the excitonic ground
state. Furthermore, different dead-layers for various resonances have not been consid-
ered. In the following, we use the microscopic model calculations (without the necessity
to approximately decouple relative and COM motion) to extract the dead-layer, also
including polaritonic effects.
For layer thicknesses of 10ax0 several transmission spectra for various reduced exciton

masses are calculated. Since the determined dead-layer will be used to augment Pekar’s
ABC, the determination process is as follows: By varying the dead-layer thickness
(which corresponds to a variation of the effective layer thickness) we fit the position of
the considered resonance of the Pekar spectrum to the corresponding peak in the spec-
trum of the microscopic calculation. Note that the procedure is only meaningful as long
as the influence of the quantum confinement on the electron–hole relative motion is
not too strong. Otherwise the dead-layer concept fails.
Our calculations quantitatively reproduce the results published in [7] for the excitonic

ground state in a slab geometry, see results for the lowest peak (n ¼ 1) in Fig. 9.
Furthermore, we observe the expected growth of the dead-layer with decreasing re-
duced exciton masses, as predicted from the simple rigid-ball model. For equal electron
and hole masses (m*=M* ¼ 0:25) one nearly obtains the expected value of 0:5ax0 for the
dead-layer, but it increases faster for decreasing m*=M* than the naive rigid-ball picture
can explain.
Additionally there is a variation of the dead-layer for the different resonace peaks in

each spectrum which is more important for decreasing m*=M*. For m*=M* � 0:11, as it
was used for GaAs examples, we see that different dead-layers have to be chosen for
the different resonances. From this point of view it is clear why a constant dead-layer
which well fits the main resonance shifts the higher polariton-states to higher energies
in comparison to the microscopic theory. These theoretical considerations show, that
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there is no justification for the assumption of a constant dead-layer to reproduce a
whole spectrum of bound exciton-states with Pekar’s ABC.

8. Conclusion Linear transmission spectra for thin GaAs, CdTe, and ZnSe samples
have been discussed. Different methods for the solution of the microscopic model have
been presented all leading to the same results. The calculated transmission spectra have
been compared to the results obtained by Pekar’s ABC with dead-layers at the sur-
faces. Furthermore the dependence of the dead-layer on the reduced exciton mass and
on the excitation frequency has been evaluated. A detailed comparison of experimen-
tally obtained transmission spectra from ZnSe samples of several thicknesses to the full
microscopic calculation and to Pekar’s ABC is currently in progress.
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