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Abstract

Within the last few decades, semiconductor optics has attracted considerable attention
due to its many applications ranging from semiconductor lasers to single photon emit-
ting devices. The proper theoretical description of a propagating light field which is cou-
pled to the excitonic resonances of the semiconductor material has been a longstanding
problem. It is complicated by the presence of surfaces and interfaces in semiconductor
heterostructures which prevents an analytical solution of the resulting polariton prob-
lem. A microscopic formulation of the coupled light and matter dynamics is required
that includes the influence of sample boundaries on the electronic system as well as on
the optical fields.

In a regime where the optical transmission and reflection spectra are strongly influenced
by propagation effects, a theoretical description of the polariton problem is formulated.
A direct solution of the non-local excitonic dynamics together with Maxwell’s equations
yields a microscopic description of propagating light fields in heterostructures with a
finite spatial extension. A new approach is developed in this work, in order to reduce the
effort of the numerically very demanding problem. The evaluation is done in terms of
exciton eigenstates which are directly determined for the confinement geometry. Finite-
height confinement potentials for the electron and hole motion as well as Fabry-Perot
effects for the optical fields are included in the microscopic description.

Theoretical results are discussed in detail for the linear optical regime and a direct
theory-experiment comparison is presented. Optical transmission spectra are analyzed
for a series of high quality ZnSe/ZnSSe heterostructures with different thicknesses of
the ZnSe layers. The theoretical results are in excellent agreement with the measure-
ments, giving a deeper understanding of polariton propagation in shallow-confinement
heterostructures.

To achieve the microscopic description of propagation effects in the nonlinear optical
regime the dynamics-controlled truncation formalism is applied. The complicated inter-
play of propagation effects and optically induced many-particle correlations is analyzed
for the samples. In contrast to the linear optical regime, biexcitonic correlations yield
a strong coupling of different polariton resonances. This is demonstrated for a typical
pump and probe setup and in a four wave mixing geometry. In order to confirm the
important observations, nonlinear transmission experiments have been initiated and
performed. Excellent agreement with the theoretical results has been achieved.
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General Introduction and Motivation

Recent progress in semiconductor growth technology has made heterostructures and
nanotechnology more and more accessible for a wide variety of applications in computer
and telecommunication technology. In particular, semiconductor optics has attracted
considerable attention due to its many applications ranging from semiconductor lasers1

to single photon emitting devices2 as well as for the characterization of semiconductor
structures. From a more fundamental point of view, semiconductor optics is an appro-
priate technique to gain a better understanding of physical processes underlying the
intrinsic properties of semiconductor structures and materials. One of the fundamental
problems of semiconductor optics is the propagation of light through a sample with
surfaces. In the linear optical regime, for propagation near the band-gap energy, a mi-
croscopic theoretical description has only recently been formulated3,4 and applied5,6 to
a realistic semiconductor heterostructure. The present work will address this problem
and extend the discussion to the nonlinear optical regime. Polariton effects arising from
the interplay of the interband polarization of a semiconductor material and propagating
light fields are studied. A more detailed discussion of the polariton problem is given on
page 25.

This work is divided into two parts and it is organized as follows: The first part is
dedicated to the linear optical regime. Polariton spectra are investigated within a
microscopic theory and a phenomenological model based on additional boundary con-
ditions. A detailed comparison with a series of experimental transmission spectra for
ZnSe/ZnSSe heterostructures is given. In the second part of this work an extension of
the microscopic theory to the nonlinear optical regime is presented. The interplay of
propagation effects and optically induced many-particle correlations is analyzed under
the influence of sample boundaries. Excitonic and biexcitonic nonlinearities are treated
within the dynamics-controlled truncation formalism.7–9 The extension of the micro-
scopic theory to the nonlinear regime allows for the analysis of optical experiments
on ultra short time scales, where, in particular, the interplay of polariton effects and
biexcitonic correlations is investigated for different optical setups.

Most of the direct band-gap semiconductor materials exhibit a strong dipole coupling of
the electronic system to an external optical field in the spectral range of the fundamental
band-gap energy. For the analysis of their optical properties it is important to use a
proper description of the coupled light-matter system. For weak external fields in the
linear optical regime interband polarizations can be analyzed in terms of excitonic
processes. However, due to the dipole coupling of semiconductor material and light,
excitonic polarizations excited by an incoming external light field can decay radiatively,
which yields a change of the external light field itself. Therefore, photons and excitons
are coupled to each other.
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Since perturbation approaches are not appropriate for a theoretical description of strong
coupling, it is convenient to introduce a new quasi-particle, the polariton. It corresponds
to the common eigenstates of the coupled light and exciton system and has originally
been introduced by Hopfield in 1958.10 Momentum conservation in an idealized bulk
semiconductor allows the analytical diagonalization of the coupled light-matter Hamil-
tonian which yields the well-known polariton dispersion.11 It describes the modes of
light propagation in the vicinity of excitonic resonances for the considered semiconduc-
tor material. Although being important for a fundamental understanding of polariton
effects, this analytical solution is not applicable to semiconductor structures with a fi-
nite spatial extension because of the missing translation invariance and the consequently
missing momentum conservation for the exciton center of mass motion.

Figure 1 shows the Hydrogen-like exci-
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Figure 1: Calculated excitonic absorption
α(ω) for an idealized bulk material. The ex-
citation energy is normalized to the bulk ex-
citon binding energy and measured relative to
the bulk band-gap energy.

tonic absorption spectrum of an idealized
bulk semiconductor material with homo-
geneously broadened exciton resonances.
Figure 2 shows typical experimental trans-
mission spectra for ZnSe semiconductor
layers with thicknesses of 20 nm, 28 nm,
and 40 nm, respectively. The resonances
in the optical spectra correspond to the
structure of the polaritonic spectrum for
light propagation through the samples.
In comparison with the bulk exciton spec-
trum in Fig. 1, the experimental results
clearly reveal a more complicated struc-
ture. The resonances between 2.805 eV
and 2.82 eV on the horizontal axis can
be attributed to heavy-hole (hh) exciton
transitions and are labeled with consec-
utive numbers. The transmission spec-
tra in Fig. 2 strongly depend on the layer
thickness due to the quantum mechani-
cal confinement of the carriers in the semiconductor layer. Although similar findings
have been reported earlier for a variety of semiconductor materials,12–17 the proper the-
oretical description has been a longstanding problem. Complications arise from the
inclusion of sample surfaces where an external light field is coupled to the polariton
modes and where the polaritons radiatively decay into photons. In the past, macro-
scopic approaches have been introduced, which rely on using the excitonic susceptibility
of the spatially homogeneous (infinitely extended) medium. In this case the inclusion
of sample surfaces requires so-called additional boundary conditions (ABCs). Never-
theless, depending on the material system, the interpretation of polariton spectra in
terms of phenomenological models yields unsatisfactory results and necessitates the use
of more or less unrealistic material parameters. A first theoretical description on a
microscopic level has only recently been formulated and applied to a GaAs layer in
Refs. 5, 6.
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In this work, semiconductor heterostructures in a slab geometry are investigated, which
contain interfaces as well as surfaces. They are suitable to investigate typical exper-
imental setups for transmission or reflection measurements. Chapters 1 and 2 are
devoted to a fundamental theoretical description of electronic and optical properties of
the investigated semiconductor structures.

Part I, Linear Polariton Propagation,
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Figure 2: Experimental transmission spectra
for a series of high quality ZnSe layers with
thicknesses of 20 nm, 28 nm, and 40 nm. For
details concerning samples and experiment see
Section 4.2.

starts with an introduction and outline
on page 25, followed by the microscopic
description of excitons and polaritons in a
semiconductor layer with finite thickness
in Chapter 3. In Section 3.5 the applica-
tion of the commonly used macroscopic
model for polariton propagation based on
Pekar’s additional boundary conditions is
outlined. In Chapter 4 results of the lin-
ear polariton propagation are discussed.
In particular, a detailed comparison of
polariton spectra obtained from the mi-
croscopic theory and the macroscopic ap-
proach is given in Section 4.1. The re-
sults allow an insight into the differences
of both models and reveal some funda-
mental shortcomings of the macroscopic
model that restrict its applicability. In
Section 4.2, a direct comparison of theo-
retical and experimental polariton spec-
tra is given for a series of ZnSe/ZnSSe
heterostructures with different ZnSe layer
thicknesses. In particular, the investiga-
tion of realistic heterostructures makes it
necessary to extend the microscopic the-
ory by including finite-height confinement
potentials for the carrier motion as well as
Fabry-Perot effects for the optical field.

Part II, Nonlinear Optics, starts with an introduction and outline on page 67. In
Chapter 5 the microscopic theory for polariton propagation is extended to the nonlin-
ear optical regime. By use of the dynamics-controlled truncation approach, a consistent
microscopic formulation is achieved. In particular, it incorporates propagation effects
and coherent optical nonlinearities which are both strongly affected by the sample
boundaries of the semiconductor heterostructure. The chapter concludes with a de-
tailed discussion of fundamental theoretical results concerning the spectral properties
of excitons and biexcitons in the confinement geometry. In Chapter 6 the theory is
then applied to nonlinear pulse propagation and to typical optical setups in pump and
probe as well as in four wave mixing geometry. A direct theory-experiment compari-
son is presented for the example of a 20 nm ZnSe layer. Results are summarized and
discussed in Chapter 7.
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1. Semiconductor Heterostructures

In order to analyze the optical properties of a semiconductor material an appropriate de-
scription of the electronic bandstructure is required. Figure 1.1 shows typical electronic
bandstructures εn(k) for II-VI and III-V bulk materials with zincblende structure. Ex-
amples are shown for ZnSe (left) and GaAs (right) along selected symmetry axes of
the first Brillouin zone. The unit cell of the zincblende crystal structure is identical
to that of a fcc (face-centered-cubic) crystal lattice, but with an atomic basis which
consists of two atoms at the lattice points. As we are interested in optical properties
around the fundamental band-gap energy the theory can be restricted to the two ener-
getically highest valence bands (E < 0) and the lowest conduction band (E > 0), see
Fig. 1.1. All interband transitions involving other bands are spectrally well separated
from the fundamental band-gap energy and can therefore be neglected here. Due to
the small momenta of photons in the investigated spectral window compared to typical
electronic momenta k, optically induced electronic transitions from a valence band to
the conduction band occur nearly vertical in the considered direct band-gap materials.
Henceforth, only a small part of the electronic dispersion near the zone center (Γ-point,
k = 0) yields a relevant contribution to the optically excited interband transitions under
investigation.
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Figure 1.1: Bandstructure of bulk ZnSe (left) and GaAs (right) along selected symmetry
axes of the first Brillouin zone. Figures are taken from Ref. 18.
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1. Semiconductor Heterostructures

To simplify things further the electronic
dispersion around the Γ-point is replaced
by a parabolic one: conduction band

k

εn(k)

Egap

heavy-hole band

light-hole band

±1
2

±3
2

±1
2

Figure 1.2: Schematic visualization of a se-
lected part of the electronic bandstructure in
effective mass approximation.

εn(k) ≈ εn(0) +
~

2

2

∑

ij

(
m∗−1

n

)
ij
kikj .

In this approximation the electrons move
like free particles in the crystal struc-
ture but with an effective mass tensor(
m∗−1

n

)
ij

= 1
~2

∂2

∂ki∂kj
εn(k) for each band n.

The simplest case is that of a diagonal
tensor with all diagonal elements being
equal. This leads to the intuitive pic-
ture of electrons with isotropic effective
masses propagating through the semicon-
ductor. Figure 1.2 schematically shows the remaining, relevant part of the electronic
bandstructure that is considered in the following. In the past, the discussed simplifica-
tions to the electronic bandstructure have successfully been applied to the calculation of
optical properties for several semiconductor materials5,11, 19 and are well-suited for the
material systems considered in this work, i.e. GaAs and ZnSe. We model the electronic
bandstructure by one conduction band with electronic total angular momentum j = 1

2

and one valence band with j = 3
2

for k = 0. The electronic states can be classified
by the z-component mj of the total angular momentum j. Around the Γ-point, due
to spin-orbit coupling, the valence band is split into two bands with different effective
masses, a light-hole (lh) band with mj = ±1

2
and a heavy-hole (hh) band with mj = ±3

2
,

see Fig. 1.2. a) In the electron-hole picture the z-component mj of the total angular mo-
mentum of electrons in the conduction band and of holes in the valence bands will be
denoted by e ∈ {−1

2
,+1

2
} and h ∈ {−3

2
,−1

2
,+1

2
,+3

2
}, respectively.

So far, only a description of electronic properties of bulk materials has been given.
Since we are interested in the optical properties of semiconductor heterostructures a
brief discussion of the treatment of spatial inhomogeneities and their influence on the
above mentioned assumptions is needed. In principle, due to the destroyed translation
invariance of the system, a full solution of the electronic problem within the crystal
potential of the heterostructure would be necessary to obtain the electronic disper-
sion and the desired one-particle basis. Instead of this we use the so-called envelope
approximation.11 Making use of the discrete translation symmetry of the crystal lat-
tice in the bulk material, the one-particle basis states ψknσ(r) fulfill Bloch’s theorem:
ψknσ(r) = eikrunk(r)χσ. Here unk(r) is the lattice periodic Bloch factor and χσ is the
spin wave function. b) In envelope approximation, the spatial part of the one-particle

a)The split-off valence band with j = 1
2 and mj = ± 1

2 is shifted to lower energies by spin-orbit coupling.
This band is of no relevance for the optically excited transitions in the energy range investigated here.

b)The separation of the spin wave function χσ and the spatial degrees of freedom is only valid in a
spin-independent external potential.
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wave functions ψenv
nσ (r) is approximated by a product of a lattice periodic part un(r)

and an envelope function ϕn(r):

ψenv
nσ (r) = ϕn(r)un(r)χσ .

In this approximation, the lattice periodic function un(r) is given by the Bloch factor
of the bulk material at the zone center unk=0(r), the envelope functions ϕn(r) vary only
slowly over the length scale of one unit cell. They fulfill a one-particle Schrödinger
equation in effective mass approximation11 for each band n with an external potential
only slowly varying over one unit cell of the crystal. Hence, in this approximation
the destroyed translation symmetry in semiconductor heterostructures only enters via
an effective external potential for the envelope functions while the effective masses are
taken from the bulk material. In the past, the envelope approximation has success-
fully been applied to the description of optical properties of a variety of semiconductor
heterostructures, e.g., in Refs. 6, 20, 21. c)

For the description of optical properties, the coupling of a classical light field to
the quantum mechanical electronic system of the semiconductor heterostructure is
needed. In dipole approximation the coupling of electronic interband transitions to
external optical fields is determined by the dipole matrix elements deh between the
considered bands. For the investigated semiconductor materials and near the Γ-point,
these dipole matrix elements are in a good approximation k-independent11 and can, in
envelope approximation, be taken from the literature for the bulk materials. However,
the coupling strength between carriers and the optical field in a given semiconductor
heterostructure is strongly influenced by the spatial structure of the carrier envelope
functions and the resulting overlap with the electric field as discussed in Section 3.2.
For the bulk material the only relevant and non-vanishing dipole matrix elements for
the considered semiconductor materials are:19

d+ 1
2
+ 3

2
= dehe− ,

d− 1
2
− 3

2
= dehe+ ,

d− 1
2
+ 1

2
=

1√
3
dehe− ,

d+ 1
2
− 1

2
=

1√
3
dehe+ . (1.1)

−3
2 −1

2 +1
2 +3

2

−1
2 +1

2

e+

e+

e−

e−

Figure 1.3: Optical dipole selection rules for
circularly polarized light. The spin degenerate
conduction band (mj = ±1/2) and light (mj =
±1/2) and heavy (mj = ±3/2) hole valence
bands are included.

Here, the optical dipole selection rules ∆mj = ±1 are expressed in terms of the circular
polarization vectors e± = 1/

√
2(ex ± iey) perpendicular to the propagation direction of

the transversal electromagnetic fields; ex, ey are the standard Cartesian basis vectors.
The corresponding interband transitions are visualized in Fig. 1.3.

c)A more profound and by far more involved way to obtain the electronic structure of semiconductor
heterostructures is the use of a tight-binding approach,22, 23 which, however, is beyond the scope of
this work.
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1. Semiconductor Heterostructures

In the present work, a semiconductor heterostructure is considered which homoge-
neously extends in the x-y-plane and has a finite thickness in the z-direction as il-
lustrated in Fig. 1.4. The electromagnetic fields solely propagate in z-direction and
are homogeneous in the x-y-plane. Hence, there is only a spatial inhomogeneity of the
system in the z-direction. Within the x-y-plane the system exhibits a translation and
rotation invariance. The carriers in the conduction and valence band are confined in the
semiconductor layer of material A with thickness L which is embedded between layers
of a larger band-gap material B. The incoming light field resonantly interacts with the
layer material A.

Typically, the crystal structure of the

A BB

L x

y

z

Eincoming

Ereflected

Etransmitted

Figure 1.4: Illustration of the considered
semiconductor heterostructure in a slab geom-
etry. For more details see text.

layer material A is grown fully strained,
i.e. with the lattice constant of the sur-
rounding material B and thus not with
the equilibrium lattice constant of the
layer material. For the typically used
material systems, e.g. ZnSe/ZnSSe or
GaAs/AlGaAs, the strain deformation of
the cubic crystal structure yields energy
shifts in the electronic bandstructure.1 In
particular, these strain-shifts lift the de-
generacy of the valence band states in
Fig. 1.2 for different |mj| at the Γ-point. d)

Therefore, signatures of electronic inter-
band transitions between the heavy-hole
band and the conduction band are spec-

trally well separated from the corresponding light-hole transitions in typical optical
experiments. For compressive biaxial strain of the layer material, heavy-hole conduc-
tion band transitions are observed at lower energies than light-hole conduction band
transitions. The opposite is true for tensile biaxial strain.1 In order not to overburden
the theory and to concentrate on more important details in the following, the descrip-
tion will be restricted to the description of a two-band model with spin degenerate
heavy-hole valence and conduction band. This simplified model turns out to describe
the experimental results in this work very well, see Section 4.2. The extension to more
than one valence band is straight forward and can be done, if necessary, using a 4x4
Luttinger Hamiltonian24,25 in its spherically symmetric form for the kinetic contribution
of carriers in the valence bands.6

In the following chapter the theory to calculate optical properties of the considered
semiconductor heterostructure illustrated in Fig. 1.4 is deduced. The starting point
is the electronic Hamiltonian in envelope approximation with dipole coupling to an
external electromagnetic field.

d)In thin layers the quantum confinement also yields a relevant contribution to the splitting of one-
particle states in the valence bands with different effective masses which also lifts the degeneracy for
different |mj |.
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2. Interband Polarization

To calculate the polarization that an optical field induces in a semiconductor material
an appropriate microscopic description is required. We start with the Hamiltonian of
the electronic system interacting with an external light field:

H = Hkin + Hdipole + HCoulomb . (2.1)

It consists of three parts: The kinetic energy of electrons and holes Hkin, their dipole
coupling to the external light field Hdipole, and the Coulomb interaction of the carriers
HCoulomb. To simulate a typical setup we consider a semiconductor layer in a slab geom-
etry with finite thickness in the z-direction and infinite, homogeneous extension in the
x-y-plane as described in the previous chapter and depicted in Fig. 1.4. A barrier mate-
rial surrounds the layer of interest to create a heterostructure with a spatial confinement
potential for the electrons and holes in conduction and valence bands, respectively. To
describe the spatially inhomogeneous system it is convenient to define suitable creation
ψi†

k (z) and annihilation ψi
k(z) operators in the Heisenberg picture, that create or anni-

hilate an electron (i = e) with in-plane momentum k = (kx, ky) or a hole (i = h) with
in-plane momentum −k at position z. To simplify the notation, the time dependence
of operators, density matrix elements and the electric field will only be made explicit
if necessary. The quantum numbers e ∈ {−1

2
,+1

2
} and h ∈ {−3

2
,+3

2
} simultaneously

denote the electronic bands and the quantum number mj of the electronic total angular
momentum z-component. The operators fulfill the fermionic commutation relations

[
ψi

k(z, t), ψ
j†
k′(z

′, t)
]

+
= δ(z − z′)δkk′δij ,

[
ψi

k(z, t), ψ
j
k′(z

′, t)
]

+
= 0 and

[
ψi†

k (z, t), ψj†
k′(z

′, t)
]

+
= 0 . (2.2)

Using these definitions the kinetic part of the Hamiltonian (2.1) takes the form

Hkin =
∑

k

∫
dz
[∑

e

ψe†
k (z)εe

k,zψ
e
k(z) +

∑

h

ψh†
k (z)εh

k,zψ
h
k(z)

]
, (2.3)

with the one-particle energy operators εi
k,zi

= ~
2k2

2m∗
i
− ~

2

2m∗
i

∂2

∂z2
i

+Egapδie +V i
ext(zi) in effec-

tive mass approximation; m∗
e and m∗

h denote the effective mass of electrons and holes,
respectively. The one-particle energy operators are matrix elements with respect to the
chosen in-plane k-basis and operators in real space for the z-direction. The external
potential V i

ext(z) is used to model the band offsets in the heterostructure illustrated in
Fig. 1.4.
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2. Interband Polarization

The interband dipole interaction of the electronic system with the external optical field
is given by

Hdipole = −
∑

keh

∫
dz
[
ψe†

k (z)ψh†
k (z)dehE(z) + ψh

k(z)ψ
e
k(z)d∗

ehE(z)
]
, (2.4)

with the dipole matrix element deh(k, ze − zh) = dehδ(ze − zh), which is local in real
space and k-independent. According to the dipole approximation, there is only a slight
variation of the electric field E(z) on the length scale of one unit cell. It can be
approximated by a piecewise constant field distribution, for further details see Ref. 1.
The electromagnetic field homogeneously extends in the x-y-plane, so that propagation
is only in the z-direction. Due to the in-plane homogeneity we only have k-diagonal
contributions to the dipole Hamiltonian, hence only electron-hole pairs with vanishing
in-plane center of mass momentum |q| = 0 are optically excited. Optical intraband
transitions are not observed in or near the visible part of the spectrum, so they are not
considered here.

The Coulomb interaction of electrons and holes in envelope approximation is given by

HCoulomb =
1

2

∑

kk′q

∫
dzdz′ V zz′

q

[∑

ee′

ψe†
k+q(z)ψe′†

k′−q(z
′)ψe′

k′(z′)ψe
k(z)

+
∑

hh′

ψh†
k+q(z)ψh′†

k′−q(z
′)ψh′

k′(z′)ψh
k(z)

−2
∑

eh

ψe†
k+q(z)ψh†

k′−q(z
′)ψh

k′(z′)ψe
k(z)

]
, (2.5)

with the Coulomb matrix elements

V zz′

q =
e20

2ε0n2
bg

e−|q||z−z′|

|q| , (2.6)

which are deduced in Appendix A.1. Here e0 is the absolute value of the electronic
charge, ε0 is the vacuum dielectric constant and nbg is the non-resonant background
refractive index of the semiconductor material. Interband transitions induced by the
Coulomb interaction that change the particle numbers in conduction and valence bands
are not taken into account since they are very unlikely due to the large band-gap energy.
Note, that this assumption is essential for the application of the dynamics-controlled
truncation scheme in Part II. In envelope approximation electron-hole exchange terms
are neglected in Eq. (2.5). This yields the loss of the singlet-triplet splitting for each
single electron-hole pair.

To give a microscopic description of the interaction of the electronic system and an ex-
ternal electromagnetic field the resonant contribution to the macroscopic polarization6

P(Z, t) =
∑

ehk

∫
dzrel d∗

ehδ(ze − zh)p
eh
(k,ze,zh) =

∑

ehk

d∗
ehp

eh
(k,Z,Z) =

∑

ehk

eehd
∗
ehp

eh
(k,Z,Z)

(2.7)
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is required, with the electron-hole relative zrel = ze − zh and center of mass (COM)
Z = (zem

∗
e + zhm

∗
h)/(m

∗
e +m∗

h) coordinates, respectively. To calculate the expectation
value of the dipole operator in Eq. (2.7), the following definition of the reduced one-
particle density matrix has been used: a)

ρk(z, z
′) =





〈
ψe†

k (z)ψe′

k (z′)
〉 〈

ψe†
k (z)ψh†

k (z′)
〉

〈
ψh

k(z′)ψe
k(z)

〉 〈
ψh†

k (z)ψh′

k (z′)
〉



 =

(
f ee′

(k,z,z′) p∗eh(k,z,z′)

peh
(k,z,z) fhh′

(k,z,z′)

)

, (2.8)

where peh
(k,z,z′) is the excitonic transition amplitude (excitonic polarization) and f ee′

(k,z,z′)

and fhh′

(k,z,z′) are the electron and hole occupation functionsb), respectively. To calculate
the time evolution of the macroscopic polarization (2.7) within a microscopic theory,
the dynamics of the excitonic transition amplitude peh

(k,z,z′) is required. It is given by:

∂

∂t
peh

(k,z,z′) =
〈
ψ̇h

k(z)ψ
e
k(z′) + ψh

k(z)ψ̇e
k(z′)

〉
. (2.9)

The time evolution of the annihilation operators is determined by Heisenberg’s equation
of motion.26 For an arbitrary operator A(t) with no explicit time dependence the
evolution is given by

d
dt
A(t) = Ȧ(t) =

i

~
[H, A(t)] . (2.10)

Making use of Eq. (2.10), the Hamiltonian (2.1), and the anti-commutation relations
(2.2), the equations of motion for the annihilation operators read:

∂

∂t
ψe

k(z) =
i

~

[
− εe

k,zψ
e
k(z) +

∑

h

dehE(z)ψh†
k (z)

+
∑

k′q

∫
dz′ V zz′

q

(∑

h

ψh†
k′ (z

′)ψh
k′+q(z

′)ψe
k+q(z) +

∑

e′

ψe′†
k′+q(z

′)ψe
k+q(z)ψ

e′

k′(z′)
)]

,

and

∂

∂t
ψh

k(z) =
i

~

[
− εh

k,zψ
h
k(z) −

∑

e

dehE(z)ψe†
k (z)

+
∑

k′q

∫
dz′V zz′

q

(∑

h′

ψh′†
k′ (z′)ψh

k−q(z)ψ
h′

k′+q(z
′) +

∑

e

ψe†
k′−q(z

′)ψe
k′(z′)ψh

k+q(z)
)]

.

a)The relevant one-particle density matrix (2.8) is k-diagonal, since, corresponding to Eq. (2.4), propa-
gation is only in the z-direction and since Coulomb interaction does not spoil the system symmetry.

b)The name “occupation function” for f ee′

(k,z,z′) and fhh′

(k,z,z′) is kept here, although, strictly speaking, they
do not represent occupation functions if the creation and the annihilation operator in these expectation
values contribute for different quantum numbers.
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2. Interband Polarization

With Eq. (2.9) this results in the equation of motion for the excitonic transition ampli-
tude: c)

i~
∂

∂t
peh

(k,ze,zh) =
(
εe
k,ze

+ εh
k,zh

)
peh

(k,ze,zh) −
∑

k′

V zezh

k−k′p
eh
(k′,ze,zh) − dehE(ze)δ(ze − zh)

+
∑

h′

deh′E(ze)
〈
ψh′†

k (ze)ψ
h
k(zh)

〉
+
∑

e′

de′hE(zh)
〈
ψe′†

k (zh)ψ
e
k(ze)

〉

−
∑

k′q

∫
dz
[
V zzh

q

(∑

h′

〈
ψh′†

k′+q(z)ψ
h
k+q(zh)ψ

h′

k′(z)ψe
k(ze)

〉

−
∑

e′

〈
ψe′†

k′−q(z)ψ
h
k+q(zh)ψ

e′

k′(z)ψe
k(ze)

〉)

− V zze

q

(∑

h′

〈
ψh′†

k′ (z)ψh
k(zh)ψ

h′

k′+q(z)ψ
e
k+q(ze)

〉

−
∑

e′

〈
ψe′†

k′+q(z)ψ
h
k(zh)ψ

e′

k′(z)ψe
k+q(ze)

〉)]
. (2.11)

Unfortunately, this equation which describes the dynamics of the excitonic transition
amplitude is not closed. First of all it is coupled to the electron and hole occupation
functions 〈ψe′†

k (zh)ψ
e
k(ze)〉 and 〈ψh′†

k (ze)ψ
h
k(zh)〉, which is unproblematic. In addition

we encounter the well-known many-particle hierarchy problem in the dynamics of the
density matrix elements:7–9

Due to the inherent many-particle Coulomb interaction (2.5) of the electronic system,
the dynamics of the excitonic transition amplitude is coupled to the dynamics of so-
called four-point functions, namely expectation values 〈. . .〉 of a combination of four
electron- or hole-creation or -annihilation operators (see lines 3-6 in Eq. (2.11)). The
dynamics of these four-point functions is then coupled to that of six-point functions
and so on.

The simplest approach to overcome this infinite many-particle hierarchy is the use of the
Hartree-Fock decoupling scheme, where four-point functions are factorized into prod-
ucts of two-point functions.11,27 This type of decoupling yields a closed set of coupled
equations for the excitonic transition amplitude and the electron and hole occupation
functions, the so-called Semiconductor Bloch Equations.11,19 Although it is possible to
self-consistently solve this set of equations up to arbitrary order in the optical fields,
within this approach, the description of the original many-particle system is restricted
to effective two-particle processes only. Correlations of higher order are altogether ne-
glected in this approximation. Many-particle effects beyond the Hartree-Fock approxi-
mation can be described by correlated many-particle processes and therefore necessarily
involve more-point functions. It is not even possible to understand all nonlinearities
of third order in the optical field in a model that is restricted to effective two-particle
effects only.

c)The Coulomb matrix elements V zezh

k−k′ contain |k − k′| =
√
k2 + k′2 − 2kk′ cos (φk − φk′ ), where the

angle φk − φk′ is enclosed by k and k′ .
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Fortunately, for exclusive optical, coherent excitation it turns out that all many-particle
effects can be characterized by a certain order in the optical field. Coherence in the
time evolution of the electronic system is realized if it is determined by the Hamiltonian
(2.1), as long as the electronic system is in its ground state prior to the optical excitation
and no non-optical excitation is applied. For more details see Chapter 5 and Appen-
dix A.2. In principle, the so-called Dynamics-Controlled Truncation (DCT) allows a
systematic and exact truncation of the many-particle hierarchy for a fully coherently
driven electronic system.7–9 Formally, this approach yields a perturbation theory with
respect to the electric field amplitude, leading to a power series for the macroscopic
polarization: d)

P = χ(1)E1 + χ(3)E3 + χ(5)E5 + . . . . (2.12)

This expression is obtained by expanding the system susceptibility χ(E), that relates
the macroscopic polarization P to the electric field E via P = χ(E)E, in terms of powers
in the electric field. In general, this approach is advantageous for the coherent optical
regime since it is not based on a perturbation treatment of Coulomb correlations. It
yields consistent and exact results as long as the intensity of the exciting optical fields is
not beyond the validity of the theory which depends on the number of considered terms
in the power series (2.12). However, for practical applicability a restriction to “low-order
nonlinearities” is necessary. Even going beyond third order contributions in Eq. (2.12) is
quite cumbersome and has only been done for one-dimensional model systems28 or for a
certain class of higher order nonlinearities.29–31 Another limiting factor is the fact, that
for higher excitation intensities the influence of incoherent carrier populations becomes
more important or even dominant over the coherent contributions which are accessible
within the DCT approach. An even more involved theory that yields meaningful results
beyond the coherent regime and for higher excitation intensities has been suggested in
Refs. 32,33. It reproduces the dynamics-controlled truncation results in the low inten-
sity limit but with a strongly increased numerical effort which is at present numerically
beyond the realms of possibilities for the realistic system considered here.

This work will focus on many-particle effects of first and third order in the optical field
within a χ(1)- and a χ(3)-theory. Part I is dedicated to rather weak external fields in
the linear optical regime. The extension of the theory to the description of third order
nonlinearities will be covered in Part II.

Linearization of the general equation of motion (2.11) for the interband polarization in
a semiconductor for weak optical fields yields the inhomogeneous exciton equation:

i~
∂

∂t
peh

(k,ze,zh)(t) =
(
εe
k,ze

+ εh
k,zh

)
peh

(k,ze,zh)(t)

−
∑

k′

V zezh

k−k′p
eh
(k′,ze,zh)(t) − dehE(ze, t)δ(ze − zh) . (2.13)

This equation can be obtained from the Hartree-Fock approximation and is exact in
linear order in the optical field. Near the band-gap energy it contains all many-particle

d)The expansion should only be understood as a schematic visualization without any technical details.
For optical excitations near the band edge, it directly follows from Eq. (2.11) that only odd orders of
the electric field enter this expansion.
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2. Interband Polarization

effects that are involved in linear optics. The only remaining dynamic quantity for the
description of the semiconductor response to an external electromagnetic field is the
excitonic transition amplitude peh

(k,ze,zh). Hence, in this regime all many-particle effects
can be understood in an effective two-particle picture in terms of excitonic polariza-
tions. Note, that in linear optics the equations of motion for interband transitions with
different quantum numbers e, h are decoupled. Choosing circular light polarization
they can be independently excited according to the dipole selection rules in Eq. (1.1)
and Fig. 1.3. The amplitude of the driving term dehE(ze, t) in Eq. (2.13) is called Rabi
energy. It is determined by the incoming light field that is observed outside the sample
where no interaction with the material polarization occurs, and by the dipole matrix
element deh for each interband transition connected to the indices e, h.

Before we proceed to find a solution of Eq. (2.13) for a spatially inhomogeneous system,
in the next section the well-known results for excitonic properties in an idealized bulk
system are reviewed.

2.1. Excitons in Bulk Semiconductors

The inhomogeneous exciton equation (2.13) has been deduced for the description of a
system with spatial inhomogeneity in the z-direction. To describe optical properties of
a spatially homogeneous system it is convenient to use the Fourier transformed version
of Eq. (2.13) in real space. The electron-hole relative position vector r̃ = r̃e − r̃h =
(xe − xh, ye − yh, ze − zh), and the center of mass (COM) coordinate Z = (m∗

eze +
m∗

hzh)/(m
∗
e +m∗

h) for the z-direction are introduced. Propagation is exclusively in the
z-direction. Therefore, in the x-y-plane, there is no finite COM momentum transferred
from the optical field to the excited electron-hole pairs. The transformation to real
space is convenient since a full analogy of excitons in a bulk system to the well-known
Hydrogen problem can be reached. The transformed exciton equation (2.13) for the
infinitely extended medium reads:

i~
∂

∂t
peh

(r̃,Z)(t) =

(
− ~

2

2µ∗∇
2
r̃ −

~
2

2M∗
∂2

∂Z2
+ Egap − V (r̃)

)
peh

(r̃,Z)(t) − dehE
eh(Z, t)δ(r̃) .

(2.14)

Here, µ∗ = (m∗
em

∗
h)/(m

∗
e +m∗

h) and M∗ = m∗
e + m∗

h are the reduced and the total
exciton mass, respectively. The relevant circularly polarized component of the excit-
ing field, according to the dipole selection rules (1.1), is denoted by Eeh(Z, t). The
Coulomb potential is given by V (r̃) = e20/(4πε0n

2
bg|r̃|). Formally, the homogeneous part

of Eq. (2.14) has the structure of a two-particle Schrödinger equation. Within an ideal-
ized bulk material two decoupled eigenvalue equations are defined for the electron-hole
relative and COM motion, respectively:

[
− ~

2

2µ∗∇
2
r̃ − V (r̃)

]
φ̃ν(r̃) = εX

ν φ̃ν(r̃) , (2.15)
[
− ~

2

2M∗
∂2

∂Z2

]
ϕqz

(Z) = εX
qz
ϕqz

(Z) . (2.16)
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2.1. Excitons in Bulk Semiconductors

The exciton total energy is given by Etotal
νqz

= εX
ν + εX

qz
+ Egap. The solution φ̃ν(r̃)

of Eq. (2.15) is known from the Hydrogen problem, but here with modified, effective
parameters. A detailed discussion is given in, e.g., Ref. 26. The eigenvalues for the
bound exciton states are

εX
ν = −EX

b

1

ν2
, (2.17)

with integer numbers ν and the bulk exciton binding energy EX
b = ERyd · µ∗/(m0n

4
bg).

The atomic Rydberg energy is ERyd =
m0e4

0

8ε2
0h2 ≈ 13.6 eV. The typical length scale of the

problem, the bulk exciton Bohr radius, is given by aX
0 = a0n

2
bgm0/µ

∗, with the atomic
Bohr radius a0 = ε0h2

πm0e2
0
≈ 0.529 Å. Values for the bulk exciton Bohr radius are typically

in between 2 nm and 15 nm. Equation (2.16) describes the one-dimensional motion of
a free particle with effective mass M∗. The plane wave solutions are given by

ϕqz
(Z) =

1√
V

eiqzZ ,

with energies εX
qz

= ~2q2
z

2M∗ . Note, that the wave functions φ̃ν(r̃) and ϕqz
(Z) fulfill the

required quantum mechanical boundary conditions for the bulk system, namely the
resulting probability density is normalized in the system volume V . Exciton relative
and COM motion are decoupled since the boundary condition only has to be applied
to the relative motion, a solution φ̃ν(r̃) is required which vanishes for |r̃| → ∞.

The excitonic transition amplitude can be expanded in terms of the complete set of
these eigenfunctions,

peh
(r̃,Z)(t) =

∑

νqz

peh
νqz

(t)ϕqz
(Z)φ̃ν(r̃) , (2.18)

with the expansion coefficients peh
νqz

(t). Together with Eq. (2.14), and making use of the
orthonormality of the exciton basis states, this expansion results in:

(
i~
∂

∂t
− εX

ν − εX
qz
−Egap

)
peh

νqz
(t) = −dehE

eh
qz

(t)φ̃∗
ν(r̃ = 0) . (2.19)

Here the contribution of the electric field Eqz
(t) =

∫
dzϕ∗

qz
(z)E(z, t) with momentum

qz has been introduced. Fourier transformation of Eq. (2.19) yields the expansion
coefficients

peh
νqz

(ω) = −
dehE

eh
qz

(ω)φ̃∗
ν(r̃ = 0)

~ω + iγ − εX
ν − εX

qz
− Egap

(2.20)

in frequency domain. The small imaginary part γ in the energy denominator was in-
troduced to guarantee the causality in the system and prevents the expression (2.20)
to become singular for real-valued frequencies ω. Furthermore, a finite imaginary part
can be used to include a dephasing constant for the excitonic polarization on a phe-
nomenological level.
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2. Interband Polarization

After transformation of the macroscopic polarization P(z, t) in Eq. (2.7) and of the
expansion (2.18) to frequency domain, the coefficients (2.20) can be used to evaluate
the macroscopic polarization:

P(z, ω) =
∑

eh

eehd
∗
ehp

eh
(r̃=0,z)(ω)

=
∑

eh

eehd
∗
eh

∑

νqz

peh
νqz

(ω)ϕqz
(z)φ̃ν(r̃ = 0)

= −
∑

ehν

eeh|deh|2|φ̃ν(r̃ = 0)|2
∫

dz′
∑

qz

ϕqz
(z)ϕ∗

qz
(z′)Eeh(z′, ω)

~ω + iγ − εX
ν − εX

qz
−Egap

. (2.21)

The polarization vectors eeh are defined according to the dipole selection rules (1.1).
To obtain this result,

∑
k p

eh
(k,ze=z,zh=z)(t) = peh

(r̃=0,z)(t) has been used. Equation (2.21)
has the formal structure

P(z, ω) =

∫
dz′χ(z, z′, ω)E(z′, ω) , (2.22)

where the susceptibility χ(z, z′, ω) is defined by

χ(z, z′, ω) = −
∑

ν

|deh|2|φ̃ν(r̃ = 0)|2
∑

qz

eiqz(z−z′)

~ω + iγ − εX
ν − εX

qz
− Egap

. (2.23)

Here, for the homogeneous system, the coupling of different space points z, z′ by the
susceptibility only depends on their distance z−z′, with χ(z, z′, ω) = χ(z−z′, ω). Hence,
due to the translation invariance, the susceptibility for electron-hole pair excitations is
reduced to a local quantity and Eq. (2.22) gains the structure of a convolution. Its
Fourier transformation to momentum space yields the product

Pqz
(ω) = χ(qz , ω)Eqz

(ω) . (2.24)

Therefore, a local relation between Pqz
(ω) and Eqz

(ω) can be deduced which is deter-
mined by the local susceptibility

χ(qz, ω) = −
∑

ν

|deh|2|φ̃ν(r̃ = 0)|2
~ω + iγ − εX

ν − εX
qz
−Egap

(2.25)

in momentum space. Only exciton states φ̃ν(r̃) with s-symmetry, that is with full
rotation symmetry, contribute to the susceptibility for dipole coupling to the optical
field; only these states fulfill φ̃ν(r̃ = 0) 6= 0. The coupling strength of the exciton states
to the optical field is determined by |deh| and |φ̃ν(r̃ = 0)|. Both, exciton relative and
COM motion (via εX

qz
) influence the optical properties of the considered system and

enter the susceptibility (2.25). To simplify the discussion of the result, we concentrate
on the qz = 0 contribution of the susceptibility in the following part of this section. Its
imaginary part is directly connected to the absorption α(ω) of the system:11

α(ω) =
4πω

nbgc0
Imχ(qz = 0, ω) .
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2.1. Excitons in Bulk Semiconductors
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Figure 2.1: Calculated imaginary part of the excitonic susceptibility for an idealized bulk
(3D) material (solid line), a two-dimensional (2D) system (dotted line), and a quantum-well
(QW) with one exciton Bohr radius thickness (dashed line). Excitation energies are given
relative to the effective band-gap energy Eeff

gap(L) for each system and are given in units of the
bulk exciton binding energy EX

b (3D).

Resonances of Imχ(qz = 0, ω) are located at the position of the excitonic eigenenergies
εX

ν +Egap. The phenomenological dephasing constant γ yields a homogeneous broaden-
ing of the resulting Lorentzians in the absorption α(ω). The solid line in Fig. 2.1 shows
the imaginary part of the excitonic susceptibility of a bulk material for typical GaAs
parameters. The excitation energy is given relative to the bulk band-gap energy and
normalized to the bulk exciton binding energy EX

b (3D). The bound exciton states con-
tribute to the spectrum for excitation energies E < 0 and the influence of the excitonic
continuum is observed for E > 0.

The solution of the eigenvalue equation (2.15) for an idealized two-dimensional system
yields an analytical expression for the energies of bound excitons in two dimensions:

εX
ν (2D) = −EX

b (3D)
1

(ν − 1/2)2
with ν ∈ {1, 2, . . .} . (2.26)

Compared to the exciton binding energy in three dimensions (2.17), we encounter in
Eq. (2.26) an exciton binding energy which is increased by a factor of four. The resulting
absorption spectrum for an idealized two-dimensional system is included as dotted line
in Fig. 2.1. For a better comparison, the excitation energy is given relative to the band-
gap energy of the two-dimensional system and normalized to the bulk exciton binding
energy EX

b (3D).
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2. Interband Polarization

To conclude this discussion we investigate the absorption spectrum of a quasi two-
dimensional quantum-well system. The quantum-well is surrounded by infinitely high
potential barriers and its thickness is sufficiently small to validate a model where only
one subband is taken into account for the motion of electron and hole perpendicular
to the well. Details concerning the evaluation of the Coulomb matrix elements are
given in Part II and Appendix A.1 of this work. The dashed line in Fig. 2.1 displays
the calculated absorption spectrum for a well thickness of one exciton Bohr radius for
GaAs. The properties, regarding position and height of the resonances, are in between
the results of the two idealized limiting cases, the three- and the two-dimensional model
systems.

For increased layer thickness propagation effects become important and the quantum
confinement of carriers results in a complicated structure of the excitonic spectrum.
Before a theory for polariton propagation in finite semiconductor heterostructures, in-
cluding the influence of boundaries on a microscopic level, is introduced in Chapter 2,
we continue the discussion of optical properties of an idealized bulk material in the next
section.

2.2. The Polariton Concept

In the previous section, the discussion of optical properties focused on the qz = 0 con-
tribution of the excitonic susceptibility (2.25). But, strictly speaking, for strong dipole
coupling, an analysis of the coupled light and exciton system is necessary where momen-
tum is transferred from the propagating light field to the induced material polarization
and vice versa. Maxwell’s equations yield the Fourier transformed wave equation for
the transversal electric field component with momentum qz,

[
n2

bg

ω2

c20
− q2

z

]
Eqz

(ω) = − ω2

ε0c20
Pqz

(ω) . (2.27)

The inhomogeneity is determined by the optically induced frequency and momentum
dependent macroscopic polarization Pqz

(ω). Making use of Eq. (2.24), which is based
on the locality of the excitonic susceptibility for the homogeneous system, Eq. (2.27)
can be transformed to

[
ω2

c20
ε(qz, ω) − q2

z

]
Eqz

(ω) = 0 , (2.28)

with ε(qz, ω) = n2
bg + χ(qz, ω)/ε0. For simplicity, the following discussion is restricted

to the contribution of the exciton ground state with the normalized wave function
φ̃ν=1(r̃) = 2√

4π

(
aX

0

)−3/2
exp (− r̃

aX
0
). With |d1|2 = |deh|2|φ̃1(r̃ = 0)|2 = |deh|2/(πaX3

0 ) the
susceptibility (2.25) for optical excitation of an excitonic polarization in the 1s state
reads:

χ(qz, ω) = − |d1|2
~ω + iγ − εX

1 − εX
qz
−Egap

.
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2.2. The Polariton Concept
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Figure 2.2: Bulk polariton dispersion for GaAs parameters. Excitonic units are chosen with
q̃ = q · aX

0 and ~ω̃ = (~ω − Egap)/EX
b .

Therefore, making use of the momentum conservation for the coupled light-matter
system, the propagation of light according to the solution of the wave equation (2.28)
obeys the dispersion:

q2
1,2(ω) =

1

2

(
q2
bg + q2

X

)
±
√

1

4

(
q2
bg − q2

X

)2
+ κ . (2.29)

The two branches q1,2(ω) of this polariton dispersion describe the propagating solutions
for the coupled light-matter system in the vicinity of the 1s exciton resonance. The
dispersion of light, only influenced by the background refractive index nbg, is given
by q2

bg = ω2

c20
n2

bg. The exciton COM motion is included by the parabolic dispersion

q2
X = 2M∗

~2 (~ω−εX
1 −Egap +iγ). The light-matter coupling strength enters the dispersion

(2.29) via the constant κ = ω2

c20

2M∗

~2ε0
|d1|2. For vanishing light-matter coupling κ = 0 and

γ → 0 the free dispersion of light and the free COM dispersion of the exciton motion
are reproduced. The two polariton branches q1,2(ω) are visualized in Fig. 2.2 for GaAs
parameters. The contributions for real-valued wave vectors describe a propagating
solution while those for imaginary wave vectors describe a damping of the propagating
polariton modes which is included in the description via the dephasing constant γ.

In this section, an analytical solution for the propagating modes of light coupled to
the excitonic resonances of an idealized bulk material has been found. However, the
solution of the polariton problem within a finite semiconductor structure is complicated
by the inclusion of boundaries which influence the electron-hole motion as well as the
optical field. Within a spatially inhomogeneous system, the electron-hole relative and
COM motion are entangled by the influence of boundary conditions.
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2. Interband Polarization

The separation of the relative and COM degrees of freedom is no longer valid for an
exciton confined in a finite semiconductor structure. Therefore, in the next chapter a
full solution of the equation of motion (2.13) for the inhomogeneous system, influenced
by boundary conditions on a microscopic level, is presented. A detailed discussion re-
garding the differences to the analytical solution for the homogeneous system is given.
Section 3.5 deals with the commonly used phenomenological application of the analyt-
ical solution, which was formulated in the present section, to a finite semiconductor
layer. Optical spectra are calculated in terms of the resulting phenomenological model.
Unfortunately, within this simplified approach, a violation of the physical boundary
conditions of a given system is unavoidable.

24



Part I:

Linear Polariton Propagation

Introduction and Outline

The theoretical description of a propagating light field interacting with the excitonic res-
onances of a semiconductor medium has been a longstanding problem. Complications
arise from the proper inclusion of sample surfaces. At these surfaces an external light
field is coupled to the polariton modes and the polaritons radiatively decay into pho-
tons. In the past, macroscopic approaches have been introduced, which continue to use
the excitonic susceptibility of the spatially homogeneous, infinitely extended medium.
In this case the inclusion of sample surfaces requires so-called additional boundary con-
ditions (ABCs). The original proposal of Pekar34 requires the macroscopic polarization
to vanish at the semiconductor surface. Other approaches suggest that the spatial
derivative35 or a linear combination of the polarization and its derivative36 should van-
ish at the sample surface. A recent discussion concerning the validity of the different
kinds of ABCs is given in Ref. 37. Unfortunately the results for the excitonic transmis-
sion and reflection spectra strongly depend on the particular treatment of boundaries
within the macroscopic models. This shortcoming can be avoided within a microscopic
formulation of boundary conditions which are imposed on the solution of a two-particle
Schrödinger equation for the electron-hole motion including Coulomb interaction. This
Schrödinger equation is directly coupled to Maxwell’s equations for the propagating
light field. Only with microscopic boundary conditions it has been possible to simul-
taneously reproduce amplitude and phase measurements of the transmitted light field
through a semiconductor layer.5,6 Another recent investigation38 has also demonstrated
the critical role of microscopic boundary conditions where for simplicity a more or less
realistic one-dimensional contact interaction between the electrons and holes has been
used.

In this work, several aspects concerning the description of polaritons are discussed in
terms of a microscopic theory. Starting from the electronic Hamiltonian, a microscopic
theory for the interband polarization in a spatially inhomogeneous semiconductor het-
erostructure, excited by an optical field, has been formulated in the previous section.
Based on this theory, the present part is dedicated to the detailed discussion of excitonic
and in particular polaritonic properties in the linear optical regime. In Chapter 2, the
equation of motion for the excitonic transition amplitude is discussed. The involved
direct solution of this exciton equation together with Maxwell’s equations is discussed
in Section 3.1.
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Sections 3.2 to 3.4 deal with new and alternative schemes for the solution of the micro-
scopic theory. These approaches make the solution more feasible because they strongly
reduce the numerical effort. As an alternative to the full numerical solution of the
two-particle Schrödinger equation, we introduce the expansion in terms of exciton wave
functions. In contrast to previous approaches3,39 this expansion is not done in terms of
bulk exciton eigenfunctions but with a basis set where each single exciton wave function
fulfills the microscopic boundary conditions. In Section 3.5 the most commonly used
phenomenological model based on Pekar’s ABCs is discussed and the conceptual short-
comings in this approach are enlightened. Results for linear polariton spectra of both
approaches are compared in detail in Section 4.1. In particular, this comparison reveals
that due to the finite spatial extension of the excitons, the system evolves so-called
polarization free dead-layers near the sample surfaces. On a phenomenological level the
dead-layer thickness can be included in macroscopic approaches as an additional para-
meter. The determination of the dead-layer thickness based on a Born-Oppenheimer
approximation has previously been discussed in Ref. 40 and the results can be confirmed
and extended by the findings in Section 4.1.2.

So far, the theoretical investigations have focused on infinitely high confinement poten-
tials for the optically excited electrons and holes. In experiments, however, polariton
propagation is investigated in layers surrounded by buffer material. These heterostruc-
tures provide a confinement potential that is relatively high in the GaAs/Al0.3Ga0.7As
system of Refs. 5, 6 but considerably shallower in the ZnCdSe/ZnSe system12 or in
ZnSe/ZnSSe structures.13 In Section 4.2 polariton effects in ZnSe/ZnSSe, as a typical
example for shallow confinement, are studied within a direct comparison of transmis-
sion experiments and calculations using microscopic boundary conditions. Additionally,
multiple reflections at the outer surfaces of the heterostructure are included in the so-
lution of Maxwell’s equations. Results are also shown for the macroscopic model based
on Pekar’s ABCs. In the presented case, the best fit of the Pekar model is obtained
for an effective sample thickness that exceeds the true layer thickness. The microscopic
calculations reveal this surprising result as an interplay between the extension of the
exciton wave function into the shallow barriers and the reduction of the polarization
near the barrier due to the finite spatial extension of the exciton wave functions.
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3. The Exciton Equation

In Chapter 2, the inhomogeneous exciton equation (2.13) has been deduced for the
description of linear optical properties of a semiconductor heterostructure in a slab
geometry:

i~
∂

∂t
peh

(k,ze,zh)(t) =
(
εe
k,ze

+ εh
k,zh

)
peh

(k,ze,zh)(t)

−
∑

k′

V zezh

k−k′p
eh
(k′,ze,zh)(t) − dehE(ze, t)δ(ze − zh) . (3.1)

The homogeneous part of Eq. (3.1) can be abbreviated by introduction of an excitonic
Hamiltonian HX acting on the excitonic transition amplitude peh

(k,ze,zh).
a) Hence, the ex-

citonic transition amplitude fulfills a time dependent two-particle Schrödinger equation
with the electric field as a driving term:

i~
∂

∂t
peh

(k,ze,zh)(t) = HXpeh
(k,ze,zh)(t) − dehE(ze, t)δ(ze − zh) . (3.2)

Explicitly, the Hamiltonian HX is given by HX
kk′ = (εe

k,ze
+ εh

k,zh

)
δkk′ − V zezh

k−k′ and its
action

∑
k′ HX

kk′peh
(k′,ze,zh) on the excitonic polarization regarding the in-plane momentum

k has been abbreviated by HXpeh
(k,ze,zh).

The following section deals with the solution of the exciton equation (3.2) and therefore
with the linear optical properties of the discussed semiconductor heterostructure with
finite spatial extension in the z-direction. Complications for the numerical solution
arise from the non-locality of the problem: Transition amplitudes at different positions
ze, zh are coupled by the action of the excitonic Hamiltonian in Eq. (3.2).

3.1. Linear Polariton Propagation: Direct Solution

The purpose of this section is to give an insight into the direct solution of Eq. (3.1). It
is coupled to a transversal electromagnetic field propagating in the z-direction. For an
arbitrary polarized state of the exciting light field, the induced excitonic polarization

a)Taking only one conduction and one valence band into account, the excitonic Hamiltonian HX does not
depend on the angular momenta e, h since the electron-hole exchange interaction has been neglected
in (2.1).
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3. The Exciton Equation

can always be written as a sum of two circularly polarized contributions:

P(z, t) =
∑

σ

Pσ(z, t)eσ = P+(z, t)e+ + P−(z, t)e−

= d∗eh
∑

k

(
p+

(k,z,z)e+ + p−(k,z,z)e−

)
. (3.3)

According to the dipole selection rules in Eq. (1.1) and Fig. 1.3, the components are
given by p+

(k,z,z) = p
−1/2,−3/2
(k,z,z) and p−(k,z,z) = p

+1/2,+3/2
(k,z,z) . The circular polarized basis

vectors can be expressed in terms of the standard Cartesian basis vectors according
to e± = 1/

√
2(ex ± iey). We use the ansatz E(r, t) =

∑
σ Eσ(z, t)eσ and B(r, t) =∑

σ Bσ(z, t)ieσ, with σ ∈ {+,−}, for circularly polarized transversal electromagnetic
fields. Therefore, propagation in the z-direction can be captured by the one-dimensional
form of Maxwell’s equations

n2
bg(z)

∂

∂t
E±(z, t) = −c20

∂

∂z
B±(z, t) − 1

ε0

∂

∂t
P±(z, t) , (3.4a)

∂

∂t
B±(z, t) = − ∂

∂z
E±(z, t) , (3.4b)

as described in Appendix B.2. Here, nbg(z) is the non-resonant background refractive
index profile along the propagation direction. c0 and ε0 are the vacuum velocity of light
and the vacuum dielectric constant, respectively. Note that Maxwell’s equations (3.4a),
(3.4b) are decoupled for each circular polarization. Hence, the dipole-allowed electronic
interband transitions are decoupled in linear optics. Since the excitonic Hamiltonian
in Eq. (3.2) does not depend on electron and hole angular momenta, it is sufficient to
study here an arbitrary eh-component of the excitonic transition amplitude in Eq. (3.3),
denoted by pk(ze, zh). Its excitation is due to the electromagnetic field in the correspond-
ing circular polarization state with its z-dependent amplitudes designated by E(z, t)
and B(z, t). The corresponding macroscopic polarization is denoted by P (z, t).

At this point the rotation invariance of the system around the z-axis allows an ana-
lytical simplification of Eq. (3.1). Motivated by this symmetry, an angular momentum
decomposition of the excitonic transition amplitude pk(ze, zh) in the x-y-plane yields

pk(ze, zh) =
1√
2π

∑

m

pm
k (ze, zh)eimφk , (3.5)

where the summation is with respect to the in-plane angular momentum quantum
number m. Here k = |k| is the modulus of the in-plane momentum k which encloses
an angle φk with the x-axis. The corresponding expansion for the Coulomb matrix
elements reads

V zezh

k−k′ =
1

2π

∑

mm′

e−imφkV mm′

kk′ (ze − zh)eim′φk′ , (3.6)

with expansion coefficients that are diagonal with respect to the angular momentum
quantum numbers m, m′

V mm′

kk′ (ze − zh) = V mm′

kk′ (ze − zh)δmm′ , (3.7)
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3.1. Linear Polariton Propagation: Direct Solution

compare Appendix A.1 and Ref. 6. Therefore, the angular momentum components
pm

k (ze, zh) of the excitonic transition amplitude pk(ze, zh) for different m are not coupled
by the electron-hole Coulomb interaction (3.6). Using the expansions (3.5), (3.6) and the
orthonormality of the eimφk b), the exciton equation (3.1) is decoupled for each angular
momentum component pm

k (ze, zh) driven by the corresponding mth Fourier component of
the electric field Em(z, t) = 1√

2π

∫
dφkE(z, t)e−imφk = E(z, t)δm,0. So for a homogeneous

electromagnetic field in the x-y-plane only the m = 0 contribution to the excitonic
transition amplitude is driven in linear optics. Starting from the ground state of the
electronic system, the initial conditions are given by pm

k (ze, zh, t = 0) = 0 for all m.
Hence, only the equation of motion for the m = 0 component pm=0

k (ze, zh) = pk(ze, zh)
has to be considered, since all other components with m 6= 0 stay zero with (3.7).

Therefore, due to the rotation invariance around the propagation direction the relevant
contribution to the excitonic transition amplitude pk(ze, zh) only depends on the mod-
ulus k of the wave vector k in the x-y-plane. The Coulomb interaction of electron and
hole is restricted to the V 00

kk′(ze −zh) = Vkk′(ze −zh) component. The resulting equation
of motion for the excitonic transition amplitude takes the form:

i~
∂

∂t
pk(ze, zh, t) =

[
Egap − iγ +

~
2k2

2µ∗ − ~
2

2m∗
e

∂2

∂z2
e

− ~
2

2m∗
h

∂2

∂z2
h

]
pk(ze, zh, t)

− 1

(2π)2

∞∫

0

dk′
[
k′Vkk′(ze − zh)pk′(ze, zh, t)

]
− dehE(ze, t)δ(ze − zh) .

(3.8)

The Coulomb matrix elements are

Vkk′(ze − zh) =
e20

2ε0n2
bg

2π∫

0

dφ
e−|k−k′||ze−zh|

|k − k′| , (3.9)

with |k−k′| =
√
k2 + k′2 − 2kk′ cos φ. The angle φ is enclosed by k and k′, nbg =

√
εbg

is the background refractive index and γ is a phenomenological dephasing constant.

The excitonic dynamics within the semiconductor layer obeys Eq. (3.8) and is uniquely
determined by microscopic boundary conditions. If the motion of electrons and holes
within the layer is confined by infinitely high potential barriers at z1, z2, these boundary
conditions are given by

pk(ze = z1, zh, t) = pk(ze = z2, zh, t) = 0 , (3.10)

pk(ze, zh = z1, t) = pk(ze, zh = z2, t) = 0 .

Hence, the excitonic transition amplitude vanishes if either electron or hole reaches the
semiconductor surface. More general, for finite band offsets in the heterostructure as
investigated in Section 4.7, the exciton wave function extends into the barrier material.
It is forced to vanish at the outer sample surfaces by microscopic boundary conditions.

b) 1
2π

∫
dφke−imφkeim′φk = δmm′ .
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3. The Exciton Equation

Effective electron mass m∗
e = 0.067 m0

Effective hole mass m∗
h = 0.457 m0

Bulk GaAs gap energy Egap = 1.42 eV
Dipole coupling constant deh/e0 = 0.5 nm
Dephasing constant γ = 0.04 meV
Background refractive index nbg = 3.71

Table 3.1.: GaAs material parameters according to Refs. 6, 19.

The time evolution of the electromagnetic field is determined by Maxwell’s equations
(3.4a) and (3.4b). The source term ∂/∂tP (z, t) in Eq. (3.4a) couples the electromagnetic
field to the induced macroscopic polarization P (z, t). With Eq. (2.7), and in terms of
the excitonic transition amplitude, P (z, t) is explicitly given by:

P (z, t) =
∑

k

d∗eh pk(z, z, t) =
1

2π

∞∫

0

dk k d∗eh pk(z, z, t) . (3.11)

Therefore, the coupled light and exciton dynamics obeys the set of partial differential
equations (3.4a), (3.4b) and (3.8). These equations are coupled by the macroscopic
polarization (3.11). They have to be solved with respect to the microscopic boundary
conditions (3.10) for the excitonic transition amplitude and Maxwell’s boundary con-
ditions for the electromagnetic fields: The continuity for the in-plane components of
electric and magnetic field and their first spatial derivatives are required.

Before we introduce a method to reduce the numerical effort to calculate the time
evolution of Eq. (3.8) we first briefly discuss the results of a direct solution of the
discretized versions of Eqs. (3.4a), (3.4b) and (3.8) in real space and momentum space
in the time domain. Details concerning the numerically involved solution of the exciton
equation (3.8) are given in Appendix B.1. A detailed discussion of the discretization
of Maxwell’s equations (3.4a), (3.4b) is given in Appendix B.2. The calculation starts
with a vanishing excitonic polarization for t = 0. When the light pulse, described by
Maxwell’s equations (3.4a) and (3.4b) in their discretized form, reaches the sample at
time t, an excitonic polarization pk(ze, zh, t) is induced that obeys the inhomogeneous
exciton equation (3.8). Because of the locality of the dipole matrix element in Eq. (3.8),
the electric field only acts as a direct source for the excitonic polarization for equal
electron and hole coordinates ze = zh. The non-locality of the interacting two-particle
problem manifests via the spatial derivatives for electron and hole coordinates which
couple different space points during the time evolution of the excitonic polarization
as described in Appendix B.1. Numerical integration of Eq. (3.8) with a small time
step ∆t yields the excitonic polarization at time t + ∆t. The resulting macroscopic
polarization (3.11) at time t + ∆t enters Maxwell’s equations and causes a change of
the fields themselves which then act again as a source to the excitonic polarization at
time t + ∆t. A self-consistent solution of this set of coupled differential equations in
space and time can be found for sufficiently small time steps ∆t as illustrated in Fig. 3.1.
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3.1. Linear Polariton Propagation: Direct Solution

Inhomogeneous exciton equation (3.8)
i~ ∂

∂t
pk(ze, zh, t) = HXpk(ze, zh, t) − dehE(ze, t)δ(ze − zh)

Maxwell’s equations (3.4a), (3.4b)
∂
∂t
E(z, t), ∂

∂t
B(z, t)

Macroscopic polarization (3.11)
P (z, t) =

∑
k d

∗
ehpk(z, z, t)

E(z, t)

pk(ze, zh, t)

∂
∂t
P (z, t)

Figure 3.1: Illustration of the self-consistent solution of the coupled set of equations (3.4a),
(3.4b) and (3.8) in the time domain. Along the arrows the quantities that couple the different
equations are indicated.

Figure 3.2 shows a calculated transmission spectrum for a GaAs layer with a thickness of
10 exciton Bohr radii surrounded by infinitely high potential barriers. To avoid Fabry-
Perot effects, here, an anti-reflection coating of the surfaces of the heterostructure has
been simulated by use of the same constant background refractive index nbg inside
and outside the GaAs layer. Material parameters are given in Table 3.1. Fourier
transformation yields the transmission T (ω) which is given by the transmitted, Itrans(ω),
divided by the incident, Iinc(ω), light intensity

T (ω) =
Itrans(ω)

Iinc(ω)
.

The excitation energy is given relative to the bulk band-gap energy Egap and normalized
to the corresponding bulk exciton binding energy EX

b . In the transmission spectrum
of a layer with finite thickness in Fig. 3.2, several resonances are present which have
not been observed in the Hydrogen-like exciton spectrum of an idealized bulk semi-
conductor, displayed in Fig. 2.1. The calculated transmission shows several additional
resonances, best seen between the energy positions of 1s and 2s exciton at −1 and −0.25,
respectively. These resonances are due to the spatial confinement of the carrier motion
in the z-direction. In analogy to a “center of mass quantization”, the spatial confinement
potential for electrons and holes in one dimension results in a discrete quantum me-
chanical energy spectrum. The level spacing sensitively depends on the layer thickness
and the height of the confinement potential. Strictly speaking, the resonances visible
in the transmission spectrum are the so-called polariton modes corresponding to the
quantum mechanical eigenstates of the coupled light and exciton system influenced by
the sample boundaries. The oscillator strength (height in the transmission spectrum) of
the polaritonic resonances strongly depends on the spatial structure of the correspond-
ing exciton states in the direction of propagation, and therefore on the layer thickness.
This fact becomes more obvious in the following section.
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3. The Exciton Equation
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Figure 3.2: Calculated transmission spectrum for a GaAs layer with thickness of 10 aX
0 ≈

125 nm. The excitation energy is given relative to the bulk band-gap energy Egap in units of
the bulk exciton binding energy EX

b .

In an experiment, the polariton resonances are most pronounced in high quality het-
erostructures with typical spatial extensions from 2 aX

0 up to 20 aX
0 at low temperatures

(for example Helium-cooled at 4 K). High quality of the heterostructures is required to
minimize the dephasing of the excitonic polarization by carrier scattering at defects in
the crystal lattice structure; additionally at low temperatures scattering with phonons
is strongly reduced. The typical polariton signatures result from the deviation of the
system from an idealized bulk crystal, or, coming from the other extreme, from a quasi
two-dimensional quantum-well. The dimensionality of these systems can be character-
ized to be somewhere in between two and three space dimensions.

3.2. The Exciton Basis – Time Domain

In the previous section a microscopic formulation of the coupled light and exciton
dynamics has been given. However, the direct solution of the problem by discretization
of the partial differential equations of motion in space and time is numerically very
demanding.6 Especially the numerical integration of the exciton equation (3.8) turns
out to be very time-consuming because of the non-locality of the excitonic transition
amplitude pk(ze, zh, t) in real space. Transition amplitudes for different coordinates
ze, zh are coupled to each other by the spatial derivatives in the kinetic part of the
excitonic Hamiltonian. In this section, an alternative approach for the solution of the
problem is presented, which strongly reduces the numerical effort.
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3.2. The Exciton Basis – Time Domain

In Eq. (3.2) the exciton equation formally has the structure of an inhomogeneous time
dependent Schrödinger equation,

i~
∂

∂t
p(k,ze,zh)(t) = HXp(k,ze,zh)(t) − dehE(ze, t)δ(ze − zh) , (3.12)

with the excitonic Hamiltonian HX. Numerical details about the discretization of the
Hamiltonian are given in Appendix B.1. Again we consider a circularly polarized light
field. The excitonic transition amplitude p(k,ze,zh)(t) can be expanded in terms of the
complete set of excitonic eigenfunctions φm(k, ze, zh). The eigenfunctions and corre-
sponding eigenenergies εm obey the eigenvalue equation

HXφm(k, ze, zh) = εmφm(k, ze, zh) . (3.13)

Note, that at this point our approach strongly deviates from earlier formulations3,38, 39

since we use an excitonic eigenbasis where the eigenfunctions φm(k, ze, zh) individually
fulfill the microscopic boundary conditions (3.10). Expanding the excitonic transition
amplitude with respect to this basis yields

pk(ze, zh, t) =
∑

m

pm(t)φm(k, ze, zh) , (3.14)

with time dependent coefficients pm(t). Inserting this expansion into the equation of
motion (3.12),

i~
∂

∂t

∑

m

pm(t)φm(k, ze, zh) =
∑

m

εmpm(t)φm(k, ze, zh) − dehE(ze, t)δ(ze − zh) ,

and using the orthonormality

∑

k

∫
dzdz′φ∗

m(k, z, z′)φm′(k, z, z′) = δmm′ (3.15)

yields the equation of motion for the expansion coefficients:

i~
d
dt
pm(t) = (εm − iγ)pm(t) − deh

∫ (
dz E(z, t)

∑

k

φ∗
m(k, z, z)

)

︸ ︷︷ ︸
Φm(t)

(3.16)

= (εm − iγ)pm(t) − Φm(t) .

In analogy to Eq. (3.8) a phenomenological dephasing constant γ has been introduced.
For the time evolution of the excitonic transition amplitude this approach yields one
ordinary differential equation for each expansion coefficient pm(t). The source term
Φm(t) for each coefficient pm(t) is given by the projection of the electric field amplitude
E(z, t) to the mth excitonic eigenstate φm(k, ze, zh) and is therefore strongly dependent
on its spatial structure. The solution of the homogeneous part of equation (3.16) can
be given in terms of damped, oscillating solutions for each contributing eigenstate m:

pfree
m (t) =

(
Ae+i εm

~
t +Be−i εm

~
t
)
e−

γ

~
t .
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3. The Exciton Equation

So, a description of the excitonic system as an ensemble of oscillators with frequencies
ωm = εm/~ has been formulated. It is self-consistently coupled to the electromagnetic
field by the driving terms Φm(t) and the macroscopic polarization (3.11). In terms of
excitonic eigenstates and with time dependent coefficients the latter one reads

P (z, t) =
∑

m

pm(t)
∑

k

d∗ehφm(k, z, z) . (3.17)

Once having calculated the excitonic eigenenergies εm and eigenstates c) φm(k, z, z′)
for a given heterostructure, Eq. (3.16) can be solved as an alternative to the direct
discretization of Eq. (3.8) presented in the previous section. The polarization of the
system as response to an external electromagnetic field is determined by the dynamics of
the expansion coefficients pm(t). Maxwell’s equations (3.4a) and (3.4b) are not affected
by the expansion of the excitonic problem and can be solved as outlined in the previous
section. For typical transmission spectra as shown in Fig. 3.2, we are only interested
in the lower energy part of the polaritonic spectrum. Therefore a restriction of the
expansion (3.14) to a few of the energetically lowest exciton states is possible in a
very good approximation. Within this approximation we are left with a finite number
of ordinary differential equations for the time evolution of the expansion coefficients
pm(t). The numerical effort depends on the number of considered states but is typically
reduced by more than one order of magnitude compared to the direct solution. In fact,
this approach nearly perfectly reproduces the results of the direct solution as long as
all neglected exciton states are spectrally well-separated from the investigated part of
the spectrum. This separation must at least exceed the homogeneous broadening of the
resonances in the spectrum. For example, Fig. 3.3 shows the transmission spectrum of
the previous section calculated with the direct solution (dashed line) and within the
truncated exciton basis (solid line) with seven exciton states taken into account. The
full transmission 1−T is shifted by 0.3 on the vertical axis for better visibility. Since we
find nearly perfect agreement of both spectra, this comparison confirms the validity of
the expansion (3.14) and the truncation of the chosen set of exciton eigenstates. Hence,
in linear optics a decoupling of polariton states is found as long as they are spectrally
well-separated.

Another advantage of the solution in the truncated exciton basis over the direct solu-
tion is the possibility to perform the numerically demanding solution of the excitonic
eigenvalue problem (3.13) separately from the system dynamics (3.16) in time. The
exciton eigenenergies and eigenstates can be stored for a given heterostructure. Follow-
ing calculations can then easily be done for different dephasings γ or dipole coupling
constants deh or for different excitation conditions. Additionally, the expansion of the
dynamic quantities in terms of exciton eigenstates provides the basis for an extension
of the microscopic theory to nonlinear optical effects in Part II. Especially the calcula-
tion of optical spectra for different excitation conditions without the need to solve the
excitonic or biexcitonic problem each time becomes indispensable in nonlinear optics.

c)Following Section 3.1 a restriction of the expansion (3.14) to in-plane s-shaped exciton eigenstates is
exact as there is no driving term for states with non-vanishing in-plane angular momentum for the
chosen geometry. Therefore the solution of the eigenvalue problem is only needed for exciton states
with in-plane s symmetry.
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Figure 3.3: Comparison of transmission spectra for a GaAs layer with 10 aX
0 thickness. Solid

line: Calculation in the truncated exciton basis. Dashed line: Full calculation, for details refer
to Section 3.1. The dashed line is shifted by 0.3 on the vertical axis for better visibility.

3.3. The Exciton Basis – Frequency Domain

In this section another alternative approach to the solution of the exciton equation (3.1)
self-consistently coupled to Maxwell’s equations is presented. In Section 3.3.1, the linear
response of the system to the external field is deduced in terms of a frequency dependent,
non-local excitonic susceptibility χ(z, z′, ω). The solution of the electromagnetic wave
equation in frequency domain is discussed in Section 3.3.2.

3.3.1. Non-Local Susceptibility

In the first part of this section, the excitonic susceptibility is directly calculated from an
eigenfunction expansion inserted into the inhomogeneous exciton equation in frequency
domain. This is then put in a more general framework where the excitonic susceptibility
is obtained from the general linear response theory.

Expansion of the Excitonic Transition Amplitude

Using the Fourier transformed excitonic transition amplitude p(k,ze,zh)(ω) and the elec-
tric field E(z, ω) in frequency domain, the inhomogeneous exciton equation (3.2) reads

(~ω + iγ −HX)p(k,ze,zh)(ω) = −dehδ(ze − zh)E(ze, ω) , (3.18)

with a phenomenological dephasing constant γ. Again we consider a circularly polarized
light field as introduced in the previous sections.
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3. The Exciton Equation

The expansion of the excitonic transition amplitude in terms of exciton eigenfunctions
φm(k, ze, zh) with, in contrast to Eq. (3.14), frequency dependent expansion coefficients
bm(ω) is given by:

p(k,ze,zh)(ω) =
∑

m

bm(ω)φm(k, ze, zh) . (3.19)

With this expansion, Eq. (3.18) takes the form
∑

m

(~ω + iγ − εm)bm(ω)φm(k, ze, zh) = −dehδ(ze − zh)E(ze, ω) ,

where εm and φm(k, ze, zh) fulfill the eigenvalue equation (3.13). The orthonormality of
the φm(k, ze, zh) yields:

(~ω + iγ − εm)bm(ω) = −deh

∑

k

∫
dz E(z, ω)φ∗

m(k, z, z) .

Therefore the frequency dependent expansion coefficients are given by

bm(ω) = −deh

∑

k

∫
dz E(z, ω)φ∗

m(k, z, z)

~ω + iγ − εm

. (3.20)

Insertion of Eq. (3.20) into Eq. (3.19) yields the excitonic transition amplitude in
the form

p(k,ze,zh)(ω) = −deh

∑

m

∑
k′

∫
dz′E(z′, ω)φ∗

m(k′, z′, z′)

~ω + iγ − εm
φm(k, ze, zh) .

The Fourier transformed, frequency dependent macroscopic polarization P (z, ω),
Eq. (3.11), induced by the circularly polarized light, is given by:

P (z, ω) =
∑

k

∫
dzrel d∗ehp(k,ze,zh)(ω)δ(ze − zh)

=

∫
dz′E(z′, ω)

(
− |deh|2

∑

m

∑

kk′

φ∗
m(k′, z′, z′)φm(k, z, z)

~ω + iγ − εm

)
. (3.21)

From this, the frequency dependent non-local susceptibility for optically excited
electron-hole pair transitions within a semiconductor layer can be defined in terms
of exciton eigenstates by

χ(z, z′, ω) = −|deh|2
∑

m

∑

kk′

φ∗
m(k′, z′, z′)φm(k, z, z)

~ω + iγ − εm
. (3.22)

Note, that in our approach, the exciton eigenstates φm(k, ze, zh) fulfill the physical
boundary conditions of the spatially inhomogeneous system and are not the bulk eigen-
states used in the previous approaches of Refs. 3,38,39. The macroscopic polarization,
Eq. (3.21), is given by:

P (z, ω) =

∫
dz′E(z′, ω)χ(z, z′, ω) .
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3.3. The Exciton Basis – Frequency Domain

As already used in the previous sections, excitonic excitations for the chosen geometry
are restricted to exciton states with vanishing in-plane angular momentum and therefore
to states with in-plane s symmetry. Hence, only these states have to be included in
the expansion (3.19). This yields the final result for the excitonic susceptibility for the
given sample geometry:

χ(z, z′, ω) = −|deh|2
(2π)2

∑

m

∫
dk dk′ kk′

φ∗
m(k′, z′, z′)φm(k, z, z)

~ω + iγ − εm

.

In the next section the same result is deduced from the more general linear response
theory following Ref. 27. Note, that the linear susceptibility (3.22) is independent of
the polarization state of the exciting light field. Therefore the macroscopic polarization
induced by a light field in an arbitrary polarization state is given by two contributions.
Each contribution only depends on the z-dependent amplitude of the electric fields
with the corresponding circular polarization. Hence, in linear optics the macroscopic
polarization is polarized in the same manner as the exciting light field.

Linear Response Theory

Following Ref. 27, the resonant contribution to the susceptibility of the electronic system
in its ground state |0〉 at temperature T = 0 is deduced. The linear response to an
external perturbation via the operator B is given by

χ(ω + iγ) = −
∑

m

〈0|B |m〉 〈m|A |0〉
~ω + iγ − εm

, (3.23)

where the observable of interest is given by the expectation value of the operator 〈A〉.
In our approach only the resonant part of the susceptibility for frequencies ω > 0 is
taken into account as the non-resonant contribution is negligible because of the large
band-gap energy. The many-particle states of the electronic system are denoted by |m〉.
We are interested in the macroscopic polarization of the system and the coupling of
the electronic system to the external field via the dipole operator e0r. Therefore the
operators A and B are both given by A = B = e0r, where r = re−rh is the relative po-
sition vector between electron and hole. The expansion of A, B in second quantization
readsd)

A = B = e0r =
∑

k

∫
dzrel 〈k, e, ze| e0r |k, h, zh〉︸ ︷︷ ︸

dehδ(ze−zh)

ψe†
k (ze)ψ

h†
k (zh) + h.c. (3.24)

= deh

∑

k

ψe†
k (Z)ψh†

k (Z) + h.c. ,

using electron-hole relative, zrel, and center of mass, Z, coordinates with ze = Z+ mh

M
zrel

and zh = Z − me

M
zrel.

d)The expansion is done with respect to the electron-hole relative coordinates k and zrel = ze−zh because
the microscopic dipole is made up of these two particles.
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3. The Exciton Equation

As in Chapter 1, a k-independent, and therefore in real space local, dipole matrix
element 〈k, e, ze| e0r |k, h, zh〉 = dehδ(ze − zh) is used. Due to the structure of the
operators A and B, here, only states contribute to the linear optical response where
only one electron-hole pair is excited from the electronic ground state. Therefore the
sum in Eq. (3.23) can be restricted to exciton states. Expansion of these effective two-
particle states in terms of one-particle product states, starting from the ground state
|0〉 yields:

|m〉 =
∑

k

∫
dzedzh am

k (ze, zh)ψ
e†
k (ze)ψ

h†
k (zh) |0〉 . (3.25)

Working in the exciton eigenbasis the expansion coefficients am
k (ze, zh) in Eq. (3.25) are

just given by the exciton eigenstates φm(k, ze, zh) used in the previous sections.

Insertion of the expansions (3.24) and (3.25) into Eq. (3.23) yields the frequency depen-
dent non-local susceptibility for excitonic excitations by weak external optical fields:

χ(z, z′, ω) = −|deh|2
∑

m

∑

kk′

φ∗
m(k′, z′, z′)φm(k, z, z)

~ω + iγ − εm
. (3.26)

This is the same result that has already been deduced in the previous section in
Eq. (3.22), directly from the inhomogeneous exciton equation. The result (2.23) for the
excitonic susceptibility in a homogeneous system directly follows from Eq. (3.26) with
the exciton eigenfunctions of the bulk material and noting that for the bulk material
the substitution

∑
k φm(k, z, z) → φ̃ν(r̃ = 0)eiqzz in Eq. (3.26) is valid. The summation

in Eq. (3.26) is over the bulk quantum numbers now, m→ {ν, qz}.
An alternative approach to the exciton equation (3.1) has been deduced here by appli-
cation of a linear response theory to the electronic system in its ground state perturbed
by a weak external field. This theory is equivalent to the previous formulation in terms
of the excitonic transition amplitude.

Figure 3.4 shows the real Reχ(z, z′, ω) and the imaginary Imχ(z, z′, ω) part of the
non-local excitonic susceptibility for the lowest three resonances in the transmission
spectrum of Fig. 3.3. The imaginary parts, that are connected to the absorption in the
material, are depicted in the upper part of Fig. 3.4. They exhibit a structure looking
similar to a product of standing waves for the z and the z′ direction. This finding
motivates a simplified interpretation of the system in terms of excitons with quantized
center of mass momentum that might be able to describe its major properties. In fact,
due to its simplicity, this picture is often used for the analysis of optical spectra of
spatially confined excitons, see discussion in Section 3.5 and Chapter 4. Even though
qualitative features can be understood in this simplified picture, within the microscopic
theory we find a structure of the susceptibility that is more complicated and that is
also strongly influenced by the exciton relative motion which enters the eigenstates in
Eq. (3.26). These eigenstates are determined by the Hamiltonian HX in Eq. (3.2) which
contains the full electron and hole motion in the z-direction. Note, that because of the
finite spatial extension of the exciton relative motion surface regions with almost van-
ishing susceptibility are encountered before the surfaces at z, z′ = 0, 10 aX

0 are actually
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Reχ(z, z′, ωi)

Imχ(z, z′, ωi)

Figure 3.4: Non-local excitonic susceptibility for the lowest three resonance frequencies ωi in
Fig. 3.3. Increasing frequency from left to right. Top: Imaginary part Imχ(z, z′, ωi), bottom:
Real part Reχ(z, z′, ωi).

reached in Fig. 3.4. The resulting polarization-free layers at the semiconductor surfaces
are discussed in detailed in Section 4.1. An interpretation of the real part is not that
intuitive, but note that both parts are symmetric with respect to interchange of z and z′

and that the essential non-locality directly follows from the microscopic description of
confined excitons. It should be emphasized again, that only for a system with transla-
tion invariance, a local excitonic susceptibility χ(z, z′, ω) = χ(z− z′, ω) can be deduced
because only in this case the exciton relative and COM motion can be separated.

3.3.2. The Wave Equation

Having deduced the excitonic susceptibility (3.26) in the previous section it can be used
as an input for the calculation of optical spectra. For propagation in the z-direction,
the wave equation for the transversal electric field E(z, ω) in frequency domain is
given by: e)

[
∂2

∂z2
+ n2

bg

ω2

c20

]
E(z, ω) = − ω2

ε0c20
P(z, ω) (3.27)

= − ω2

ε0c20

∫
dz′χ(z, z′, ω)E(z′, ω) .

e)Only E(z, ω) needs to be determined; the magnetic field directly follows from Maxwell’s equations.
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nbgnbgnbg

z1 z2
z

Eleft

Emed

Eright

Figure 3.5: Illustration of the geometry that is considered for the solution of the one-
dimensional wave equation.

Concentrating on the solution for the scalar z-dependent field amplitude E(z, ω) of one
circularly polarized component of the electric field E(z, ω), we end up with the scalar
wave equation:

[
∂2

∂z2
+ n2

bg

ω2

c20

]
E(z, ω) = − ω2

ε0c20

∫
dz′χ(z, z′, ω)E(z′, ω) . (3.28)

The solution has to be determined with respect to Maxwell’s boundary conditions: Con-
tinuity of the in-plane component of the field itself and of its first spatial derivative is
required. Again, a simplified model of a single semiconductor layer surrounded by infi-
nitely high confinement potentials for electrons and holes is considered as illustrated in
Fig. 3.5. An anti-reflection coating of the outer sample surfaces (not shown in Fig. 3.5)
is simulated by use of the same background refractive indices inside and outside the
sample as already described in the previous sections. For this slightly simplified model
the solution of the wave equation in frequency domain is explicitly demonstrated. Using
a transfer matrix method, this approach can easily be extended to more complicated
structures including Fabry-Perot effects for the optical field as it is outlined in Sec-
tion 4.2.2. A solution of Eq. (3.28) in momentum space, which could be used in bulk
semiconductors in Section 2.2, is not appropriate here because of the inhomogeneity of
the system and the consequently missing momentum conservation which results in a
non-local excitonic susceptibility.

Figure 3.5 illustrates the considered situation for light propagation through the semi-
conductor layer. Outside of the sample, on the left, an ansatz with an incoming and a
reflected plane wave contribution is used:

Eleft(z, ω) = eiq(ω)z + Er(ω)e−iq(ω)z , (3.29)

with q2(ω) = n2
bg

ω2

c20
. The amplitude of the incoming field is normalized to unity.

Outside of the sample, on the right, we only have a transmitted contribution with
amplitude Et(ω):

Eright(z, ω) = Et(ω)eiq(ω)z . (3.30)

Due to the coupling of the light field to the material polarization, the solution exhibits
a more complicated structure inside the sample. It cannot just be captured by a linear
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3.3. The Exciton Basis – Frequency Domain

combination of two plane waves. Formally the right hand side of the integro differential
equation (3.28) can be handled as an inhomogeneity, although depending on the desired
solution itself. A meaningful ansatz for the solution inside the sample is given by the
sum of a particular solution of the inhomogeneous equation (3.28) and a general solution
of its homogeneous part. A particular solution of the inhomogeneous equation can be
found by the corresponding Green’s function, which satisfies

[
∂2

∂z2
+ n2

bg

ω2

c20

]
G(z, z′, ω) = δ(z − z′) .

For the one-dimensional wave equation (3.28) it is given by41

G(z, z′, ω) = G(z − z′, ω) = − i

2q(ω)
eiq(ω)|z−z′| .

The general solution of the homogeneous equation (3.28) is given by a propagating and a
counter-propagating plane wave with amplitudes a(ω) and b(ω), respectively. Therefore
the solution inside the sample is given by

Emed(z, ω) =a(ω)eiq(ω)z + b(ω)e−iq(ω)z

+

∫
dz′G(z, z′, ω)

[
− ω2

ε0c20

∫
dz′′χ(z′, z′′, ω)E(z′′, ω)

]

︸ ︷︷ ︸
S(z,ω)

. (3.31)

Continuity of E(z, ω) and its spatial derivative E ′(z, ω) at the interfaces between the
three regions yields four linear equations for the four unknown coefficients a(ω), b(ω),
Er(ω) and Et(ω): f)

1. Continuity of E(z, ω) at z = 0:

1 + Er(ω) = a(ω) + b(ω) + S(0, ω) (3.32a)

2. Continuity of E(z, ω) at z = L:

Et(ω)eiq(ω)L = a(ω)eiq(ω)L + b(ω)e−iq(ω)L + S(L, ω) (3.32b)

3. Continuity of ∂
∂z
E(z, ω) at z = 0:

iq(ω) − iq(ω)Er(ω) = iq(ω)a(ω) − iq(ω)b(ω) + S ′(z, ω)
∣∣
z=0

(3.32c)

4. Continuity of ∂
∂z
E(z, ω) at z = L:

iq(ω)Et(ω)eiq(ω)L =iq(ω)a(ω)eiq(ω)L

− iq(ω)b(ω)e−iq(ω)L + S ′(z, ω)
∣∣
z=L

(3.32d)

f)As a short notation we use S′(z, ω) = ∂
∂z
S(z, ω).
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start:
En=0

med (z, ω)
Sn(z, ω) (3.31)

an+1 (3.34)
bn+1 (3.35)

an ?
= an+1

bn
?
= bn+1

end:
Et(ω) (3.33)

En+1
med (an+1, bn+1, Sn(z, ω)) (3.31)

yes

no

Figure 3.6: Self-consistency scheme for the solution of the polariton problem in frequency do-
main. The steps in the iterative solution are given by the superscript index n for all quantities
that are adapted during the iteration process.

The formal solution of this system of linear equations (3.32a)-(3.32d) is straight forward
and yields the amplitude Et(ω) of the transmitted part of the field:

Et(ω) = −1

2

[
S(0, ω) − 2 − S(L, ω)e−iq(ω)L

+
1

iq(ω)

(
S ′(z, ω)

∣∣
z=0

− S ′(z, ω)
∣∣
z=L

e−iq(ω)L
)]

. (3.33)

However, the solution has to be computed self-consistently as the formal inhomogeneity,
the right hand side of Eq. (3.28), depends on the desired solution itself. As illustrated
in Fig. 3.6, the self-consistent solution also requires the amplitudes a(ω) and b(ω) for
the propagating and counter-propagating plane wave contributions inside the sample,

a(ω) = −1

2

(
S(0, ω) +

S ′(z, ω)
∣∣
z=0

iq(ω)
− 2

)
, (3.34)

b(ω) = −1

2
eiq(ω)L

(
S(L, ω) −

S ′(z, ω)
∣∣
z=L

iq(ω)

)
. (3.35)

The resulting transmission spectrum with T = |Et|2 is shown in Fig. 3.7 (solid line).
Parameters are given in Table 3.1 on page 30. For a comparison, the spectrum calculated
by the solution of Eq. (3.16) in time domain is included too (dashed line). Note,
that nearly exact agreement is found although both solutions have been computed by
completely different approaches. Especially the inherent physical self-consistency of the
polariton problem is manifested in both approaches but enters the numerical evaluations
in completely different ways.
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Figure 3.7: Comparison of transmission spectra for a GaAs layer with 10 aX
0 thickness. Solid

line: Calculation in frequency domain. Dashed line: Calculation in time domain, reproduced
from Fig. 3.3. The dashed line is shifted by 0.3 on the vertical axis for better visibility.

In Section 3.1 the self-consistency is included in the calculation of the time evolution.
For small time steps the source terms that couple the equations of motion are inter-
changed after each time step as illustrated in Fig. 3.1. This way, using sufficiently small
time steps to reach numerical convergence of the results, a nearly “simultaneous” and
self-consistent computation of the polariton dynamics is simulated.

The self-consistency in the solution presented in this section is manifested in the iterative
solution of the Eqs. (3.32a)-(3.32d) as illustrated in Fig. 3.6. For the first step in
the iterative solution, a starting value must be chosen for the electric field amplitude
En=0

med (z, ω) inside the medium. In the following iteration steps adapted amplitudes
a(ω) and b(ω) g) are used for each step in the iteration until convergence of the result
is reached. Due to the linearity of Eq. (3.27), the solution can be found independently
for each frequency ω of the incident light field.

For the GaAs model system investigated here, the numerical effort for the solution of
the polariton problem in frequency domain is comparable to that for the solution in
time domain introduced in Section 3.2. The most time-consuming part of the evaluation
is the calculation of the exciton basis states and energies. However, for the analysis
of experimental polariton spectra in Section 4.2 the inclusion of multiple reflections of
the optical field between the outer sample surfaces of the heterostructure as illustrated
in Fig. 1.4 on page 12 is required. These multiple reflections lead to Fabry-Perot
effects. The approach in frequency domain easily allows this extension without further
complications.

g)Only these two amplitudes enter the calculation of S(z, ω) because the susceptibility χ(z, z′, ω) vanishes
outside the sample.
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An inclusion of these effects in time domain would require a large number of grid points
in real space for the numerical solution of Maxwell’s equations, which makes an ac-
curate description very time-consuming. In frequency domain, however, the inclusion
is straight forward and needs by far less execution time. So, here, the frequency do-
main is clearly superior to the time domain for the investigation of more complicated
heterostructures.

3.4. The One-Particle Product Basis

To finish the general discussion concerning the solution of the exciton equation (3.1),
another approach for the calculation of the exciton eigenenergies and eigenstates is
introduced in this section. So far, in Sections 3.1 to 3.3, a direct numerical discretization
scheme in real and momentum space has been used for the excitonic Hamiltonian. This
approach yields largeh) sparse matrices due to the necessarily large number of grid
points in real space to reach good numerical convergence i). An alternative approach is
the calculation of the Hamiltonian matrix with respect to a discrete one-particle basis
for the z-direction. The one-particle states are used to properly account for the spatial
inhomogeneity. We start with the excitonic Hamiltonian in real space representation:

HX = − ~
2

2m∗
e

∇2
re
− ~

2

2m∗
h

∇2
rh
− V (re − rh) + V e

ext(ze) + V h
ext(zh) + Egap .

An appropriate one-particle basis to capture the electron (hole) in-plane motion and
its motion in the z-direction is given by a product of a plane wave contribution with
in-plane momentum ke (kh) and the envelope function χ(ze) (ϕ(zh)). The latter one
obeys the one-dimensional Schrödinger equation

(
− ~

2

2m∗
e

∂2

∂z2
+ V e

ext(z) + Egap

)
χn(z) = εe

nχn(z) , (3.36)

(
− ~

2

2m∗
h

∂2

∂z2
+ V h

ext(z)
)
ϕn(z) = εh

nϕn(z) (3.37)

for electrons (e) and holes (h), respectively. It contains the external confinement po-
tential V e

ext(z) (V h
ext(z)) in the semiconductor heterostructure.

h)Depending on the layer thickness and the numerical accuracy typical dimensions of the discretized
Hamiltonian matrix are of the order of 105 up to 106.

i)To obtain the Hamiltonian matrix for the numerical evaluation in the previous approach, the spatial
derivatives in the z-direction are approximated by difference quotients with finite step size.
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Separation of in-plane electron-hole relative and COM motion yields the excitonic
Hamiltonian matrix in the one-particle product basis (i, j,k) with in-plane relative
momentum k: j)

H ijkl
kk′ =

〈
ijk
∣∣H
∣∣lkk′〉 =

(
~

2k2

2µ∗ + εe
i + εh

j

)
δilδjkδkk′

+

∫
dzedzhχ∗

i (ze)ϕ
∗
j(zh)V

zezh

k−k′ϕk(zh)χl(ze) . (3.38)

Infinitely high confinement potentials for electrons and holes yield χi(z) = ϕi(z). Then,
the Coulomb matrix elements read

V ijkl
kk′ =

∫
dzedzhϕ∗

i (ze)ϕ
∗
j (zh)V

zezh

k−k′ϕk(zh)ϕl(ze) , (3.39)

with V ijkl
kk′ = V ikjl

kk′ = V ljki
kk′ for real-valued one-particle wave functions ϕi(z). For

infinitely high confinement potentials, the solutions of the one-particle problems in
Eqs. (3.36) and (3.37), are:

ϕn(z) =

√
2

L
sin knz with kn =

πn

L
, (3.40)

εe
n =

~
2π2

2m∗
e

n2

L2
+ Egap and εh

n =
~

2π2

2m∗
h

n2

L2
. (3.41)

For layer thicknesses of 5 aX
0 and 10 aX

0 , Fig. 3.8 shows the lowest eigenvalues of the
Hamiltonian matrix (3.38) depending on the number of one-particle states taken into
account. Additionally, the “exact” eigenvalues, obtained by the direct discretization used
in the previous sections, are included as a reference. The result reveals two important
features: First of all we encounter a convergence of the eigenenergies with increasing
number of discrete one-particle states towards the reference values. The second point
is that we find a faster convergence for the thinner layer (5 aX

0 ) than for the thicker one
(10 aX

0 ). Caused by the increasing level spacing of the one-particle energies in Eq. (3.41)
for decreasing layer thickness, the contributions of higher one-particle states are reduced
with decreasing layer thickness.

In this section, we have presented an alternative way to compute the exciton eigenener-
gies and eigenstates by changing the quantum mechanical basis. However, for practical
purposes an important question is which method is the most efficient one. Of course, the
basic idea for the calculation with respect to the discrete one-particle basis is to neglect
higher one-particle states. Hence, the evaluations are done in a truncated basis with a
small number of one-particle basis states in a good approximation for the lowest exciton
states. Nevertheless, the number of one-particle states that have to be considered to
reach good numerical convergence strongly depends on the layer thickness.

j)In analogy to the previous sections, only states with in-plane COM momentum |q| = 0 have to be
considered here.
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Figure 3.8: Dependence of the exciton energies calculated with respect to a truncated one-
particle basis. Results are shown for (a) 5 aX

0 and for (b) 10 aX
0 thickness of the GaAs layer. The

“exact” energies obtained by the corresponding calculations in real space following Section 3.2
are included as a reference. Energies are given in excitonic units according to the horizontal
axis in Fig. 3.7

Good results within the discrete one-particle basis can only be obtained for rather thin
layers. In this case, higher one-particle states can be neglected being interested in a
proper description of the lowest exciton states only. Nevertheless, for thicker layers
the Hamiltonian matrix (3.38) rapidly grows and it is important to keep in mind that
it only contains a rather small number of zero elements compared to the Hamiltonian
directly discretized in real space.

In conclusion, for practical purposes, the method presented first provides more reliable
results with less numerical effort than the calculation in a discrete one-particle basis.
However, the basic idea to work in a standing wave like basis for the z-direction is used
in Chapter 5 for the calculation of Coulomb matrix elements. For the solution of the ex-
citonic problem all computations throughout this work are performed by discretization
of the Hamiltonian in real space as described in Appendix B.1.
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3.5. Macroscopic Theory: Pekar’s ABCs

In the previous sections of this chapter a microscopic theory for the description of
exciton polaritons in thin semiconductor layers has been deduced. The theoretical
analysis of polariton spectra in the past and even nowadays is mostly done in terms of
phenomenological models. This section gives an insight into a phenomenological and
macroscopic approach. Without a microscopic description of the excitonic dynamics
influenced by realistic boundary conditions, which are uniquely given by the physi-
cal properties of the system, a solution of the phenomenological models can only be
found by introduction of the so-called additional boundary conditions (ABCs). These
boundary conditions cannot be justified on a microscopic level and are only imposed on
macroscopic quantities of the system, e.g., the macroscopic polarization or the polariza-
tion flux. Due to the lack of microscopic justification, a phenomenological ansatz has
to be made for the ABCs. After the original introduction of the additional boundary
condition concept by Pekar in 1958,34 different proposals for these boundary conditions
have been presented: Originally, Pekar postulated a vanishing macroscopic polarization
at the semiconductor surface.34 Another proposal is that of a vanishing polarization
flux at the surface35 or even of an appropriate linear combination of both of these quan-
tities.36 Recently, in Ref. 42 even another macroscopic formulation has been suggested
to compensate the shortcomings of models with missing microscopic foundation. Based
on the solution of the exciton problem in the bulk material presented in Section 2.1,
these models are much easier to handle and numerically much less involved and de-
manding than the microscopic theory presented in the previous sections of this chapter.
Although calculations within macroscopic models phenomenologically reproduce the
main features that are observed in experimental transmission spectra,13 quantitative
agreement is only obtained in some cases and for wrong or unrealistic material para-
meters.6,43 Especially the layer thickness has to be adjusted.

In this work, the original Pekar ABCs are used for calculations within a macroscopic
model since they led to best results in comparison with the microscopic theory and the
experiment in Ref. 6. In this section the application of Pekar’s ABCs to the semicon-
ductor model system introduced in the previous sections is summarized.

The considered situation for propagation of light through a single semiconductor layer
is equivalent to Section 3.3.2, Fig. 3.5. Again, we make use of the homogeneity of the
system in the x-y-plane which reduces the solution of the electromagnetic wave equation
to a one-dimensional problem. On the left, we have an incoming and a reflected plane
wave contribution:

Eleft(z, ω) = eiqlz + Er(ω)e−iqlz with ql = nbg
ω

c0
. (3.42a)

The amplitude of the incoming wave is normalized to unity. The transmitted part on
the right is given by:

Eright(z, ω) = Et(ω)eiqrz with qr = nbg
ω

c0
. (3.42b)
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3. The Exciton Equation

Inside the layer, the solution for the electric field is influenced by its coupling to the
optically induced excitonic polarization. Therefore, a more detailed investigation of the
excitonic problem is necessary to find an appropriate ansatz: In general, the solution
of the interacting two-particle problem in a confinement situation cannot be separated
into relative and COM motion. Therefore, for an exact treatment a solution of the
full problem as done in the previous sections of this chapter cannot be avoided. Nev-
ertheless, following the ansatz of Pekar, we deduce a theory that is founded on the
well-known solution for the electron-hole relative motion (Hydrogen problem) for an
idealized bulk system, compare Sections 2.1 and 2.2. Ignoring the constraints by sur-
faces or interfaces, the relative motion is separated from the COM motion. Therefore,
the exciton relative and COM motion are decoupled, although we are interested in a
system with finite spatial extension, and despite the knowledge that this decoupling, in
principle, is not valid. This way, the exciton problem is reduced to the solution of the
confined COM motion of a point-like particle with the total exciton mass M∗, while
the electron-hole relative motion intrinsically enters the exciton binding energy. Within
this approach, the ansatz for the electric field in the sample, with propagating E+

p and
counter-propagating E−

p contributions, is:

Emed(z, ω) =
∑

p=1,2

(
E+

p (ω)eiqp(ω)z + E−
p (ω)e−iqp(ω)z

)
. (3.42c)

Here q1,2(ω) are the two branches of the polariton dispersion for the coupled light and
exciton system of the bulk material from Section 2.2.

This formulation naturally implies that the COM momentum qz of the exciton is still
a good quantum number and can be used to classify the propagating modes in the
material. Obviously, in principle, this assumption is not valid for a system without
translation symmetry in the direction of propagation. As a consequence of this short-
coming of the phenomenological ansatz, the continuity of the z-dependent electric field
amplitude E(z, ω) and its first spatial derivative ∂E(z,ω)

∂z
at the interfaces z1 and z2 is not

a sufficient requirement to find a unique solution for the transmitted field amplitude
Et(ω). There are six unknown coefficients Er(ω), Er(ω) and E±

p=1,2(ω) in the equations
(3.42a), (3.42b) and (3.42c) but only four continuity conditions at the two interfaces.
To find a unique solution of the problem and to compensate the missing microscopic
and physical justification of the ansatz (3.42c), additional boundary conditions have to
be introduced on a phenomenological level. Originally these ABCs have been imposed
on the macroscopic polarization of the system which is given by

P (z, ω) =
∑

p=1,2

χ(qz, ω)|qz=qp(ω)

[
E+

p (ω)eiqp(ω)z + E−
p (ω)e−iqp(ω)z

]
, (3.43)

in terms of the local bulk exciton susceptibility χ(qz, ω), Eq. (2.25). Pekar’s ABCs to
the macroscopic polarization P (z, ω) are given by:

P (z = z1,2, ω) = 0 . (3.44)

The macroscopic polarization vanishes at the surfaces at z1 and z2.
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Using these ABCs, a solution of the Eqs. (3.42a)-(3.42c) and (3.43) becomes possible
and yields the set of linear equations

Eleft(z1, ω) = Emed(z1, ω) : eiqlz1 + Er(ω)e−iqlz1

=
∑

p=1,2

[
E+

p (ω)eiqpz1 + E−
p (ω)e−iqpz1

]
(3.45a)

Emed(z2, ω) = Eright(z2, ω) : Et(ω)eiqrz2 =
∑

p=1,2

[
E+

p (ω)eiqpz2 + E−
p (ω)e−iqpz2

]

(3.45b)

∂Eleft(z, ω)

∂z
|z1 =

∂Emed(z, ω)

∂z
|z1 : iqleiqlz1 − iqlEr(ω)e−iqlz1

=
∑

p=1,2

[
iqpE

+
p (ω)eiqpz1 − iqpE

−
p (ω)e−iqpz1

]
(3.45c)

∂Emed(z, ω)

∂z
|z2 =

∂Eright(z, ω)

∂z
|z2 : iqrEt(ω)eiqrz2

=
∑

p=1,2

[
iqpE

+
p (ω)eiqpz2 − iqpE

−
p (ω)e−iqpz2

]
(3.45d)

P (z1, ω) = 0 :
∑

p=1,2

χ(qp, ω)
[
E+

p (ω)eiqpz1 +E−
p (ω)e−iqpz1

]
= 0 (3.45e)

P (z2, ω) = 0 :
∑

p=1,2

χ(qp, ω)
[
E+

p (ω)eiqpz2 +E−
p (ω)e−iqpz2

]
= 0 (3.45f)

The solution of Eqs. (3.45a)-(3.45f) yields the frequency dependent transmission
through the semiconductor layer:

T (ω) = |Et(ω)|2 .

Figure 3.9 shows a transmission spectrum for the example of a GaAs layer with thickness
of 10 aX

0 . The additional boundary conditions (3.44) yield standing waves for the exciton
COM motion with the discrete wave numbers qn for a sample thickness L. The exciton
eigenenergies are given by:

EX
n = εX

1 + Egap +
~

2

2M∗ q
2
n with qn =

π

L
n with n ∈ {1, 2, . . .} . (3.46)

The discrete structure of the energy spectrum for the COM motion yields additional
resonances in the excitonic susceptibility and in the transmission spectrum in Fig. 3.9
compared to the case of an idealized bulk system in Fig. 2.1.
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Figure 3.9: Transmission spectrum for a 10 aX
0 GaAs layer with Pekar’s ABCs. Material

parameters are given in Table 3.1 on page 30.

Therefore, despite of its conceptional shortcomings a description of the optical response
of confined excitons is obtained which qualitatively reproduces the main features of
the polaritonic resonances in optical transmission spectra.12,13 Thinking in terms of
the phenomenological approach, the quantization is commonly referred to as “COM
quantization” of the polariton propagation.12–17

A phenomenological solution for a propagating light field coupled to the 1s exciton
resonance in a semiconductor heterostructure has been presented in this section. Nev-
ertheless, one should be aware of the fact that the solution of the exciton for a bulk
material was applied to a finite semiconductor layer which necessitates the use of ABCs
for the macroscopic polarization. However, there is no differential equation which has to
be fulfilled by the macroscopic polarization and on whose solution boundary conditions
could be imposed. To apply physical meaningful boundary conditions on a microscopic
level, the solution of the full two-particle problem for the electron-hole transition am-
plitude is unavoidable, although inconvenient due to the high numerical effort. The
relative motion as well as the COM motion is influenced by the boundary conditions
and they are coupled to each other in contradiction to the assumptions made for the
macroscopic model in this section. The resulting shortcomings and the applicability
of the macroscopic model in comparison to the microscopic theory and experimental
results are investigated in detail in the next chapter.
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Propagation

In Chapter 3 a microscopic theory for the calculation of linear transmission spectra
has been introduced. A phenomenological formulation has been given in Section 3.5.
Section 4.1 of this chapter is dedicated to the discussion and comparison of the results
obtained by both approaches for the GaAs model system introduced in Chapter 3.
Furthermore, the validity of the macroscopic approach is discussed for various material
parameters and excitation conditions. In particular, the comparison of results leads to
the introduction of the dead-layer concept that helps to augment the model based on
Pekar’s ABCs. To conclude the discussion of linear polariton spectra in Section 4.2,
we investigate transmission spectra for ZnSe/ZnSSe heterostructures. This material
system is studied as a typical example for shallow-confinement heterostructures. For
this system a direct comparison of transmission experiments and calculations using
microscopic boundary conditions is presented. Results obtained by the macroscopic
model based on Pekar’s ABCs are shown and discussed, too.

4.1. Microscopic Theory vs. Pekar’s ABCs

4.1.1. Introduction of the Dead-Layer Concept

The solid line in Fig. 4.1 shows the transmission spectrum of a GaAs sample with a
thickness of L = 10 aX

0 calculated within the microscopic theory. The result is repro-
duced from Fig. 3.2 on page 32. Resonant monochromatic excitation of the sample
within the microscopic theory yields the space dependence of the macroscopic polariza-
tion P (z, ω) in z-direction. Results for the six lowest resonances are shown in Fig. 4.2.
The polarization evolves standing wave like structures inside the layer which corresponds
to the naive picture of a COM quantization of the exciton movement in z-direction in
analogy to the discussion in Section 3.5. However, the system exhibits surface layers
with negligible macroscopic polarization of the semiconductor due to the finite spatial
extension of the exciton as a Coulomb bound state of electron and hole. The situation
is complicated by the fact that the thickness of these layers differs for various resonance
frequencies, which directly follows here from the microscopic theory. Note, that despite
the symmetry of the exciton eigenstates with respect to z = 5 aX

0 , the coupling to the
propagating light field yields steady-state polarizations |P (z, ω)| which do not exhibit
the symmetry of the corresponding exciton wave functions.
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Figure 4.1: Calculated GaAs transmission spectrum for a sample thickness L = 10aX
0 . The

excitation energy is given relative to the bulk band-gap energy Egap and in units of the bulk
exciton binding energy EX

b .

When Pekar’s ABCs are used to calculate optical spectra, the boundary conditions
are only imposed on the COM motion within the slab, which leads to discrete exciton
energies EX

n = EX
b + Egap + ~

2π2

2M∗
n2

L2 . The corresponding transmission spectrum has
already been shown in Fig. 3.9 and is reproduced as dotted line in Fig. 4.1. To account
for the finite spatial extension of the exciton states in this picture in an approximate
way, the introduction of so-called dead-layers of thickness d with |P (z)| ≈ 0 at the
surfaces of the sample for 0 < z < d and L − d < z < L is appropriate. Using the
results of the microscopic theory displayed in Fig. 4.1, we estimate an effective sample
thickness Leff = L − 2d = 7.2 aX

0 for the n = 1 resonance. The result of a calculation
based on Pekar’s ABCs using this dead-layer, determined for the first resonance n = 1,
is shown as dashed line in Fig. 4.1. Although the structure of the “double-peak” main
resonance is nearly reproduced, the energy positions of the higher exciton replica are
shifted to higher energies in comparison to the microscopic spectrum. This is due to
the fact that the higher polariton modes exhibit smaller dead-layers than the main
resonance as shown in Fig. 4.2. The dead-layer determined for the n = 1 resonance is,
strictly speaking, not an appropriate choice for the higher states.
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Figure 4.2: Spatial distribution of the macroscopic polarization for stationary, monochro-
matic excitation. The excitation frequency is tuned to the resonances of the system (solid line
in Fig. 4.1).

m/M large: m/M small:

e-
e-hh

COM

a
0
X

a
0
X

COM

Figure 4.3: Illustration of the “rigid ball” model for the exciton. The two limiting cases
are included. Left: Equal electron and hole masses. Right: Infinitely heavy hole. A detailed
discussion is given in the text.

4.1.2. Dependence of the Dead-Layer on the Reduced Exciton
Mass

Having introduced the dead-layer as a phenomenological parameter to augment Pekar’s
ABCs, the microscopic model is used to systematically determine the influence of ma-
terial parameters and excitation frequency on the dead-layer thickness. The motion of
electron and hole relative to the exciton COM coordinate can be characterized by the
reduced exciton mass µ∗ normalized to the total exciton mass M∗. This is motivated by
the naive picture of electron and hole treated as “rigid balls” as illustrated in Fig. 4.3.
If the electron and hole masses are approximately the same, the COM is situated in the
center between electron and hole. Since the electron-hole transition amplitude must
vanish if either electron or hole reaches the surface, the COM can approach the sur-
face up to half an exciton Bohr radius. If the hole is much heavier than the electron,
the COM is approximately at the hole position. In this case, to fulfill the boundary
conditions, the COM distance to the surface is at least one exciton Bohr radius.
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For a general discussion of this behavior the dependence of the dead-layer thickness
on the reduced exciton mass, normalized to the total exciton mass µ∗/M∗, is investi-
gated. The limiting cases of equal electron and hole masses and infinitely heavy holes
correspond to µ∗/M∗ = 0.25 and µ∗/M∗ = 0, respectively. Recent investigations of the
dead-layer for the exciton ground state in Ref. 40 have been based on an approximate
decoupling of the exciton relative and COM motion by use of a Born-Oppenheimer pro-
cedure. Different dead-layers for various resonances have not been considered. In the
following, we use the microscopic model calculations to extract the dead-layer thickness.
For a layer thickness of 10 aX

0 several transmission spectra for various reduced exciton
masses are calculated. Since the determined dead-layer will be used to augment Pekar’s
ABCs, the determination process is as follows: By variation of the dead-layer thickness
the position of the considered nth resonance of the Pekar spectrum is adjusted to the
corresponding peak in the spectrum of the microscopic calculation. This procedure cor-
responds to an adjustment of the effective layer thickness for the macroscopic model.
Results for the dead-layer thickness are given in Fig. 4.4. Note, that the procedure is
only meaningful as long as the influence of the quantum confinement on the electron-
hole relative motion is not too strong. Otherwise, for thin layers, the dead-layer concept
fails.

The calculations quantitatively reproduce the results presented in Ref. 40 for the exciton
ground state (here n = 1) in a slab geometry. Furthermore, the expected growth of
the dead-layer with decreasing reduced exciton masses is observed, as predicted from
the simple rigid-ball model. For equal electron and hole masses (µ∗/M∗ = 0.25) the
expected value of 0.5 aX

0 for the dead-layer is nearly reached, but it increases faster
for decreasing µ∗/M∗ than the rigid-ball picture can explain. Additionally, there is
a variation of the dead-layer thickness for the different resonances in each spectrum
which becomes more important for decreasing µ∗/M∗. Because of this dependence,
a constant dead-layer which well-fits the main resonance, shifts the higher polariton-
states to higher energies in comparison to the microscopic theory. This is what has
been observed in the results for the GaAs model system in Fig. 4.1.

Concluding these theoretical investigations, there is no justification for the use of a
constant dead-layer to reproduce a whole spectrum of bound exciton states with Pekar’s
ABCs. Depending on material system, the interpretation of polariton spectra in terms
of phenomenological models can lead to a more or less unrealistic sample thickness or
other unreasonable material parameters as discussed in the following section.
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4.2. Theory vs. Experiment

In the previous section the analysis of polariton spectra has been done for systems with
infinitely high potential barriers surrounding the semiconductor layer that resonantly
interacts with the optical fields. However, in realistic heterostructures the confinement
of electrons and holes is provided by finite-height confinement potentials. The height of
theses potentials strongly depends on the investigated material system. The assumption
of infinitely high confinement potentials does hold in a good approximation, e.g., for the
GaAs/Al0.3Ga0.7As material system investigated in Refs. 5, 6. However, for instance,
for ZnCdSe/ZnSe44 or ZnSe/ZnSSe13 heterostructures the confinement potentials are
considerably shallower.

To extend the previous discussions, in this section polariton spectra are investigated for
a material system where the assumption of infinitely high confinement potentials does
not hold anymore but rather shallow confinement potentials are provided for electrons in
the conduction band and for holes in the valence band. In order to give a direct theory-
experiment comparison for a shallow-confinement situation three ZnSe/ZnSxSe1−x sam-
ples with nominal thicknesses for the ZnSe layer of 20 nm, 28 nm and 40 nm have been
grown. Section 4.2.1 gives some insight in the growth process by molecular beam
epitaxy, the ex-situ characterization by high resolution X-ray diffraction, the sample
preparation, and the setup for the measurement of optical transmission spectra. The
heterostructures are schematically illustrated in Fig. 4.5. The ZnSe layer resonantly
interacts with the incident light field. More details concerning structural and electronic
properties are given in Sections 4.2.1 and 4.2.2.
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Figure 4.5: Illustration of the considered semiconductor heterostructure in a slab geometry.
Conduction band (cb) and heavy-hole valence band (vb) alignments are visualized. The system
homogeneously extends in the x-y-plane and has a finite thickness |z2 − z1| in the z-direction.
For more details see text.

4.2.1. Sample Growth, Characterization, Preparation, and
Optical Setup

Three ZnSe/ZnSSe samples with nominal thicknesses of 20, 28, and 40 nm for the ZnSe
layer were grown by molecular beam epitaxy (MBE). Preceding the growth process of
the ZnSe/ZnSSe heterostructure, a 180 nm thick GaAs buffer layer was deposited on
the GaAs(001) substrate. The ZnSe layer was embedded between two ZnSxSe1−x layers
with nominal sulfur content x = 6 %. The structure was grown lattice-matched to the
GaAs substrate and the thickness of the ZnSSe buffer layers was 1µm on the GaAs side
and 500 nm on the top side.

The samples were characterized using a high resolution X-ray diffractometer. The
results confirm a good lattice-match of the structure to the GaAs substrate. The
resulting composition of the ZnSSe barriers as well as the thickness of the ZnSe layers
could be extracted from the experiment by simulation of the resulting X-ray patterns.
They are given in Table 4.1.

For transmission experiments the GaAs substrate was removed by chemical etching.
For the measurement of linear transmission spectra a conventional setup was used, a
Xeon lamp, a cryostat, a spectrometer with a resolution of 10−4 eV, and a photomul-
tiplier. The samples were free-standing and immersed in a liquid helium bath with a
temperature of 4 K. Additional technical details are given in Ref. 43.
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Nominal ZnSe layer thickness [nm] 20 28 40

Experimentally determined:

ZnSe layer thickness [nm] 21.5 29.0 43.5
Barrier sulfur content x [%] 5.2 5.0 5.8
Parameters for microscopic theory:

ZnSe layer thickness [nm] 20.7 29.4 43.7
Heavy-hole val. band offset ∆Ehh

v [meV] 21.2 20.6 23.2
Conduction band offset ∆Ec [meV] 2.7 2.1 4.6
Parameters for Pekar’s ABCs:

ZnSe layer thickness [nm] 22.5 31.5 45.5

Table 4.1.: Structural sample parameters determined by high resolution X-ray diffraction
and input parameters for the microscopic theory for the different samples. Band offsets are
determined as outlined in Section 4.2.2. The layer thicknesses for the microscopic theory agree
with the experimental ones, within an error of ±0.8 nm. For the macroscopic model the layer
thicknesses are chosen so that the best result is obtained for a reproduction of the experimental
transmission spectra.

The samples were grown by Arne Gust and the characterization by high resolution X-
ray diffraction was done by Gabriela Alexe under supervision of Prof. Dr. D. Hommel
at the Institute for Solid State Physics, Semiconductor Epitaxy Group, University of
Bremen. The optical measurements and the sample preparation have been performed
by Iryna Kudyk under supervision of Dr. H. I. Rückmann and Prof. Dr. J. Gutowski
at the Institute for Solid State Physics, Semiconductor Optics Group, University of
Bremen.

4.2.2. Modelling the ZnSe/ZnSSe Heterostructure

So far, the theoretical investigations have focused on infinitely high confinement poten-
tials for the optically excited electrons and holes. To give an appropriate theoretical
description of the ZnSe/ZnSSe heterostructures, here, two fundamental extensions to
the formulation of the microscopic theory in Section 3.3 have to be made. First of all,
a model with infinitely high potential barriers surrounding the ZnSe layer cannot be
used. According to the physical properties of the heterostructure, illustrated in Fig. 4.5,
the transitions from ZnSe to ZnSSe are modeled by the use of finite band offsets ∆Ec,
∆Ehh

v in the external potentials for electron and hole. Since the carrier wave functions
exhibit a finite extension into the barrier material, care has to be taken to reach good
numerical convergence of the results for the considered exciton energies and wave func-
tions. A sufficiently large region outside the ZnSe layer must be taken into account
for their calculation to avoid artifacts due to the finite total size of the numerical grid.
Additionally, in contrast to Section 3.3.2, Fabry-Perot effects due to multiple reflections
of light between the outer surfaces of the heterostructure at z1 and z2 in Fig. 4.5 are
taken into account. The solution of the wave equation, using a transfer matrix method,
is outlined in the following.
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4. Results: Linear Polariton Propagation

The Wave Equation and Fabry-Perot Modes

To take into account different background refractive indices inside and outside the semi-
conductor heterostructure illustrated in Fig. 4.5 the solution of the polariton problem
as described in Section 3.3.2 has to be extended. In contrast to Section 3.3.2 here five
space regions have to be distinguished where an ansatz for the desired solution for the
electric field is made. The solution outside the sample (z < z1 and z > z2) can still be
described by simple plane waves in analogy to Eqs. (3.29) and (3.30) in Section 3.3.2
but with wave numbers q(ω) = ω

c0
noutside

bg according to the background refractive index
noutside

bg outside the sample. The solution inside the medium in the regions where no
resonant interaction of the optical field with the semiconductor material takes place is
determined by plane wave solutions too, but with q(ω) = ω

c0
nbg. The ansatz for the

solution in the space region where a non-vanishing resonant excitonic polarization is
induced by the light field is chosen in analogy to Eq. (3.31) in Section 3.3.2. Continu-
ity of the electric field and its first spatial derivative is used to connect the solutions
in the different space regions by use of a transfer matrix method45 which results in
a self-consistent solution of the polariton problem again. The inclusion of different
background refractive indices nbg inside and noutside

bg outside the semiconductor material
results in multiple reflections of the light field at the surfaces at z1 and z2 resulting in
so-called Fabry-Perot effects in the optical transmission spectra. The Fabry-Perot ef-
fects strongly depend on the overall thickness of the heterostructure and determine the
absolute values of the transmitted light intensity. The influence of Fabry-Perot effects
on the investigated transmission spectra for ZnSe/ZnSSe heterostructures is discussed
in Section 4.2.3.

The Bandstructure and Parameters

This subsection is devoted to the material parameters that are used to model the
electronic bandstructure and its offsets at the semiconductor interfaces. The effective
masses for the heavy-hole valence band that follow from the Luttinger Hamiltonian in
axial approximation are1

m∗
hh‖ =

m0

γ1 + γ2
= 0.327 m0 ,

m∗
hhz =

m0

γ1 − 2γ2
= 0.813 m0 ,

for the in-plane motion and the motion in growth direction, respectively. a) The Lut-
tinger parameters γ1 and γ2 are given in Table 4.2, m0 is the bare electron mass.
Different effective masses for electrons and holes in the ZnSe and ZnSSe materials are
not considered because they would yield only minor changes to our results: (i) Changes

a)The one-particle energies in the Hamiltonian (2.1) have to be modified to take into account different
effective massesm∗

hh‖, m
∗
hhz for the hole in-plane motion and the motion in the z direction, respectively.

Consequently, this modification results in an exciton equation (3.1) where inhomogeneous hole masses
are included.
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4.2. Theory vs. Experiment

Band-gap energy Egap(ZnSe) = 2.82593 eV
Dephasing constant γ = 0.35 meV
Dipole coupling deh/e0 = 3.7 Å
Backgr. refractive index nbg = 2.95
Effective electron mass51 m∗

e = m∗
e‖ = m∗

ez = 0.147m0

Luttinger parameter51 γ1 = 2.45
Luttinger parameter51 γ2 = 0.61

Table 4.2.: ZnSe material parameters for the microscopic theory, equal for all samples. Ma-
terial parameters entering the macroscopic model are discussed in the text. The bare electron
mass is denoted by m0.

in the electron mass are negligible due to the small sulfur contents x < 6 %. (ii) The
hole states, contributing to the optical spectra, only slightly penetrate the barrier due
to the relatively large heavy-hole band offsets ∆Ehh

v � ∆Ec and the large effective
heavy-hole mass. In a good approximation, the optical band-gap bowing for a ternary
compound, consisting of the elements A, B and C, is given by1

EABxC1−x
gap = (1 − x)EAC

gap + xEAB
gap − bx(1 − x) . (4.1)

Here EAC
gap and EAB

gap are the band-gap energies of the pure binary constituents, and
EABxC1−x

gap is the resulting band-gap energy of the ternary compound with a content x
of material B. For the ZnSe/ZnSSe material system a variety of bowing parameters b
has been reported.46 Here, an intermediate value of b = 0.43 eV is used as a repre-
sentative average of the literature values. Band-gap energies of the pure binary bulk
materials are47

EZnS
gap (T = 5 K) = 3.84 eV ,

EZnSe
gap (T = 5 K) = 2.82 eV .

The ZnSe band-gap energy coincides quite well with the result for our samples given
in Table 4.2. b) For the unstrained bulk materials the valence band offset from ZnSe to
ZnS is ∆Ev(ZnSe,ZnS) = 530 meV.48 Similar values have been reported elsewhere.49,50

With the band-gap energies this yields a conduction band offset of ∆Ec(ZnSe,ZnS) =
490 meV. We assume that the ratio of valence and conduction band offsets from pure
ZnSe to ZnSxSe1−x does not depend on the sulfur concentration x for the unstrained
bulk materials.

b)Keep in mind the strain enlargement of the band-gap energy in the considered heterostructures which
is discussed in the following.
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Figure 4.6: Schematic illustration of the energy shifts in the electronic bandstructure of a
biaxially compressively strained zincblende crystal.

Due to pseudomorphic growth on GaAs(001) substrate, the ZnSe layer is biaxially
compressively strained. This yields energy shifts of its conduction and valence bands52,53

as illustrated in Fig. 4.6. The resulting energy shifts for conduction and heavy-hole
valence band are given by1

∆Ec,strain = 2ac

(
1 − C12

C11

)
εxx , (4.2)

∆Ehh
v,strain = ∆Ehydrostatic

v,strain − ∆Eshear
v,strain

= 2av

(
1 − C12

C11

)
εxx − bv

(
1 + 2

C12

C11

)
εxx . (4.3)

Due to the changed volume of the strained crystal unit cell, a hydrostatic deformation
potential is obtained for the conduction and the valence band. An additional shear
deformation potential applies for the valence band shift due to the changed symmetry
in the strained crystal structure. The hydrostatic deformation potential decreases the
band offsets for both bands and thus enlarges the band-gap energy of the ZnSe material.

The shear deformation potential increases the offset for the heavy-hole valence band and
thus decreases the band-gap energy as illustrated in Fig. 4.6. The required material
parameters for ZnSe are49,53 ac = −5.9 eV, av = −1.0 eV, bv = −1.14 eV for the
deformation potential constants, and C11 = 929 kbar, C12 = 562 kbar for the elastic
stiffness tensor elements. The strain tensor element εxx = (a‖,ZnSe − a0

ZnSe)/(a
0
ZnSe)

follows from the in-plane lattice constants of the fully strained (a‖,ZnSe = aGaAs) and
unstrained (a0

ZnSe) ZnSe material. The band offsets for the different samples follow from
Eqs. (4.1), (4.2) and (4.3), with the sulfur concentration in Table 4.1. They slightly vary
around carrier confinement potentials of 3 meV for the conduction band and 22 meV
for the heavy-hole valence band, compare Table 4.1.
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Figure 4.7: Transmission spectra for the (a) 20 nm, (b) 28 nm, and (c) 40 nm sample. Dashed
line: Experiment. Solid line: Microscopic theory with Fabry-Perot effects.

The small conduction band offset coincides with previous results for ZnSe/ZnSSe het-
erostructures with larger sulfur concentrations.44,52 Note, that in these systems exciton
states are localized at the position of the ZnSe layer by the confinement of the hole
motion; the electron is mainly “bound” to the ZnSe layer by the electron-hole Coulomb
interaction.54

4.2.3. Results

In this section the optical transmission spectra for the three samples described in Sec-
tions 4.2.1 and 4.2.2 are investigated. The measured transmission spectra in the vicinity
of the excitonic resonances of the ZnSe layer are shown as dashed lines in Fig. 4.7 for the
(a) 20 nm, (b) 28 nm, and (c) 40 nm sample, respectively. Because of the high quality
of the heterostructures even the weaker polariton resonances are clearly resolved. All
peaks that can uniquely be attributed to resonances of the 1s heavy-hole polariton in
the finite ZnSe layer are labeled with hh and consecutive numbers.

61



4. Results: Linear Polariton Propagation

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

2.805 2.81 2.815 2.82 2.825
0.0

0.2

0.4

0.6

0.8

1.0

(a)

(b)

(c)

T
ra

ns
m

is
si

on
1
−
T

T
ra

ns
m

is
si

on
1
−
T

T
ra

ns
m

is
si

on
1
−
T

Excitation energy [eV]

Figure 4.8: Transmission spectra for the (a) 20 nm, (b) 28 nm, and (c) 40 nm sample without
Fabry-Perot effects. Solid line: Microscopic theory, deh/e0 = 3.7Å. Dotted line: Pekar’s
ABCs, deh/e0 = 2.89Å. Dashed-dotted line: Pekar’s ABCs, deh/e0 = 3.7Å.

While light-hole resonances are not considered in the calculations, at least the lowest
light-hole (lh) resonance, and even higher resonances in the 40 nm layer, can be seen in
the experiment. In each subfigure, the resulting spectrum from the microscopic theory
is given by the solid line. Input parameters are taken from Tables 4.1 and 4.2. In a
good approximation to the experimental setup, a vacuum background refractive index
noutside

bg = 1 is used outside the sample. The results demonstrate that the microscopic
theory well reproduces the experimental findings for the considered part of the spectrum.
The deviations for higher energies result from the not considered light-hole exciton
contributions, higher heavy-hole exciton states, and the neglected frequency dependent
dispersion of the ZnSSe layers in this frequency range. Here we make use of the fact
that in the linear regime various polariton resonances are decoupled, as it has been
shown in Section 3.2. The dephasing constant γ and the band-gap energy Egap(ZnSe)
for the heavy-hole conduction band transition in the strained ZnSe layer (Table 4.2)
are adjusted according to the experimental values.
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4.2. Theory vs. Experiment

The surfaces of the heterostructure form a resonator for the optical field. The result-
ing Fabry-Perot modes are superimposed to the polariton resonances. To concentrate
exclusively on the polariton effects in the ZnSe layer, the solid lines in Fig. 4.8 show
results of the microscopic calculation without Fabry-Perot effects. This corresponds to
an ideal antireflection coating of the outer sample surfaces as it has been used through-
out the preceding part of this work. For the macroscopic model, isotropic effective
masses m∗

e , m
∗
hh = m∗

hhz for electrons and holes have to be used to facilitate the analyt-
ical solution, formulated in Section 3.5, which necessitates a slightly shifted band-gap
energy EPekar

gap = 2.8289 eV in comparison to the microscopic theory. The results are
shown as dashed-dotted lines for a dipole coupling deh/e0 = 3.7 Å and as dotted lines
for deh/e0 = 2.89 Å, respectively.

The dipole coupling deh/e0 = 3.7 Å corresponds to the value of the microscopic theory.
However, for the macroscopic model it turns out to be not appropriate. This is due
to the assumption of homogeneity that enters the macroscopic model and that is not
fulfilled for the system here. For a meaningful comparison with the microscopic theory,
an effectively reduced dipole coupling constant is extracted from the microscopic theory
in the following way: Within a homogeneous system the reduced exciton mass µ∗ is
connected to the bulk exciton binding energy EX

b (3D) given in Section 2.1 by

µ∗ =
32π2ε2

0n
4
bg~

2

e40
EX

b (3D) .

Using the exciton binding energy EX
b = 19 meV obtained from the microscopic theory

for the anisotropic system, it is possible to extract an effective reduced exciton mass
µ∗

eff. This yields an effective exciton Bohr radius

aX
0,eff =

4πn2
bgε0~

2

µ∗
effe

2
0

,

which, together with the dipole coupling constant deh/e0 = 3.7 Å, provides an effective
longitudinal-transversal splitting

∆mic
LT =

|deh|2
πn2

bgε0aX3
0,eff

. (4.4)

With the assumption ∆Pekar
LT = ∆mic

LT we obtain an effectively reduced dipole coupling
constant deh/e0 = 2.89 Å for the macroscopic model. Our discussion shows, that within
a macroscopic model for a homogeneous system applied to an inhomogeneous semicon-
ductor heterostructure the dipole coupling constant is underestimated. In principle,
the commonly used determination of dipole coupling constants from the longitudinal-
transversal splitting is not appropriate here since Eq. (4.4) is only valid for homogeneous
materials.
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Figure 4.9: Steady-state polarization for monochromatic, resonant excitation of the three
lowest polariton modes in the microscopic theory without Fabry-Perot effects for the (a) 20 nm,
(b) 28 nm, and (c) 40 nm sample. The excitation frequency is tuned to the first (dotted line),
second (dashed-dotted line), or third (dashed line) resonance, respectively. The solid lines
illustrate the confinement potential for carriers in the ZnSe layer.

For each calculation based on Pekar’s ABCs the layer thickness is adjusted for best
reproduction of the energy positions of the polariton resonances in the experimental
spectrum. The resulting values are given in Table 4.1. The values for the layer thickness
chosen for the macroscopic model are even larger than the values that are experimen-
tally determined as well as used for the microscopic calculation. At first glance this
seems to be in contradiction to the fact that for infinitely high potential barriers of the
ZnSe layer, a polarization-free dead-layer near the surface has been found in Section 4.1.

For a better understanding of these apparent inconsistencies in the application of Pekar’s
ABCs, Fig. 4.9 shows the spatially resolved macroscopic excitonic polarization P (z, ω)
obtained from the microscopic theory for resonant monochromatic excitation of the
lowest three polariton states. Due to the relatively small height of the confinement
potentials in the ZnSe/ZnSSe system, the exciton wave functions can even penetrate
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4.2. Theory vs. Experiment

slightly into the barrier region. This shows that for shallow confinement potentials
the “effective” sample thickness used in the macroscopic calculations based on ABCs
can even exceed the true layer thickness, and that in this case the dead-layer concept
presented in Section 4.1 breaks down.

It is interesting to note that in a layer with high confinement potential the thickness
of the region of reduced polarization varied for different polariton resonances of a given
sample, Fig. 4.2. In the cases displayed in Fig. 4.9 this variation is much less pronounced.
Especially for the 40 nm sample the effective thickness is almost the same for the dis-
played polariton modes. This also explains previous interpretations of experiments
for ZnSe/ZnSSe heterostructures13 in terms of Pekar’s ABCs using the same effective
thickness for all resonances of a given sample. As it turns out now, the used sample
thickness exceeds the true value. However, the spatial dependence of the macroscopic
polarization P (z, ω) in Fig. 4.9 clearly deviates from a simple picture of quantization
of the COM motion which shows the intricate interplay of relative and COM motion
with the propagating light field.

To summarize this chapter, in Section 4.1 a detailed comparison of polariton spectra
calculated within a microscopic theory and in terms of a macroscopic approach based
on Pekar’s ABCs has been given. Attention has been focused to the shortcomings
resulting from the lack of microscopic justification of the macroscopic model. A fun-
damental understanding of the deviations of both approaches has been obtained from
the macroscopic polarization of the system. To account for a finite extension of the
exciton states, polarization free dead-layers at the semiconductor surfaces have been
introduced to augment the macroscopic model in comparison with the results of the
microscopic theory. However, the dead-layer thickness has to be included as an ad-
ditional phenomenological parameter and, even worse, this parameter is not uniquely
given but it varies with the excitation frequency. This variation and the dependence on
the reduced exciton mass has been deduced from the microscopic theory.

In Section 4.2 the microscopic theory has been applied to polariton propagation in a
shallow confinement potential situation for which ZnSe/ZnSSe heterostructures served
as a typical example. Results for the polariton modes in transmission spectra reproduce
the experimental observations while calculations based on Pekar’s ABCs require unre-
alistic modifications of the material parameters. This is due to the fact that Pekar’s
ABCs assume an infinite-height confinement potential where the realistic inclusion of
the exciton relative motion has been found to require a polarization-free dead-layer. For
shallow-confinement situations, a breakdown of these concepts has been demonstrated
since the application of Pekar’s ABCs requires an effective sample thickness which even
exceeds the thickness of the confinement potential. Generally the use of macroscopic
ABC models inherits uncertainties in the used sample thickness to adjust the spectral
position and oscillatory strength of all polariton resonances of the same spectrum. In
particular, the studied ZnSe/ZnSSe structures demonstrate the counteracting influence
of a shallow confinement potential, the band offset, and the carrier masses that result
in exciton wave functions having nearly the same effective spatial extension. This is,
however, by no means trivial and strongly dependent on the material system.
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Part II:

Nonlinear Optics

Introduction and Outline

The second part of this work is dedicated to the microscopic description of polariton
propagation in the nonlinear optical regime. In linear optics the only dynamic quantity
which determines the optical properties of the system is the excitonic transition ampli-
tude. Here, in nonlinear optics, the dynamics-controlled truncation7–9 (DCT) approach
is used for a systematic truncation of the infinite many-particle hierarchy in the equa-
tion of motion for the excitonic polarization. This approach results in a perturbation
theory in which all relevant many-particle correlations can, without further approxi-
mation, be taken into account. In the low-intensity regime and on ultra short time
scales with a duration of the optical excitation typically shorter than one picosecond,
the assumptions on which the DCT theory is based are very well fulfilled: Coherence
for the electronic system which is optically excited from its ground state can almost
perfectly be realized. So far, theories based on this scheme have successfully been ap-
plied to quasi two-dimensional quantum-well systems, e.g., in Refs. 20, 55–58, or to
one-dimensional model systems.28,59 The investigation of optical experiments gives an
insight into the fundamental quantum mechanical processes excited in the semiconduc-
tor material. In particular, on ultra short time scales, coherent electronic excitations
can be investigated before the coherence is destroyed by their coupling to, e.g., crystal
lattice vibrations (phonons), or by scattering at imperfections in the crystal structure,
or by carrier-carrier scattering with incoherent carrier populations.

However, in analogy to the linear optical regime discussed in Part I of this work, the
description of optical excitations in semiconductor heterostructures makes it necessary
to introduce boundary conditions for both the induced material polarization as well as
for the optical fields. In typical quantum-well structures, where the spatial extension
of the heterostructures is small compared to the wave length of the incident light field,
propagation effects lead to radiative broadening60 of excitonic resonances and in multi-
ple quantum-well systems to a radiative coupling of several quantum-wells.20 Systems of
multiple quantum-wells coupled to the modes of a surrounding optical cavity, where the
boundary conditions for the electromagnetic fields are of great importance, have been
discussed in, e.g., Refs. 56, 61. Beyond the quantum-well limit, however, propagation
effects in the nonlinear regime have only been discussed ignoring the influence of sample
boundaries62,63 or in a regime where incoherent carrier dynamics is dominant.64,65
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Furthermore, commonly the analysis of propagation effects is done with boundary con-
ditions that are only imposed on a macroscopic level,12,59, 65 in terms of additional
boundary conditions (ABCs) as already discussed in Section 3.5. However, for semi-
conductor heterostructures with spatial extension of the order of several exciton Bohr
radii, the structure of optical spectra is strongly influenced by propagation effects43,65

and the proper treatment of sample boundaries becomes, as already discussed in the
preceding chapters of this work, indispensable.

The nonlinear theory presented here is based on the DCT formalism and is applied
to realistic heterostructures that can be characterized to be in between two and three
space dimensions. The formulation incorporates both, propagation and coherent many-
particle effects for these semiconductor layers. It properly accounts for the finite spatial
extension of the exciton and biexciton states within a spatially inhomogeneous system.
Based on this theory, nonlinear transmission spectra for single light pulses, in pump
and probe and in four wave mixing geometry are presented and discussed in detail.
To obtain a consistent theory it is necessary to restrict the calculations to third order
nonlinearities and even the systematic inclusion of fifth order effects for the realistic
system considered here, would be nearly impossible. So far, extensions beyond the third
order have been discussed only for one-dimensional model systems28 or for a certain class
of higher order correlations29–31 in quasi two-dimensional quantum-well systems.

In this work, the discussion of optical nonlinearities starts in Chapter 5. In Section 5.1
the equations of motion for the relevant dynamic quantities, namely the excitonic transi-
tion amplitude and the biexcitonic correlation function, are deduced. To make a solution
of the resulting equations of motion possible, a description of the excitonic and biexci-
tonic problem in the exciton eigenbasis is derived in Section 5.2. The required matrix
elements are calculated in the new basis, where, in analogy to Chapter 3, the eigenstates
individually fulfill the physical boundary conditions of the system. An eigenfunction
expansion that has successfully been applied to quantum-well systems32,66, 67 is repro-
duced in the quasi two-dimensional limit. In contrast to quantum-well systems,29,58, 67

however, the expansion of biexciton states in terms of exciton eigenfunctions can here
systematically be extended beyond the exciton ground state. In Section 5.3 the result-
ing matrix elements are discussed and, in particular, the dependence of the biexciton
binding energy on the layer thickness is studied. Chapter 6 is dedicated to the equa-
tions of motion which are explicitly given to simulate optical experiments for single
pulse transmission, in pump and probe as well as in four wave mixing geometry.

In Chapter 7 the theory is applied to the calculation of optical spectra. The complicated
interplay of propagation effects and excitonic as well as biexcitonic nonlinearities is
discussed in detail. Pronounced signatures of the bound biexciton state and the exciton-
exciton scattering continuum are found in the optical spectra. Theses signatures show
a strong dependence on the polarization of the exciting light fields. In particular,
the Coulomb interaction of different polariton modes is found to strongly influence
the observed nonlinearities in contrast to the linear optical regime. To conclude the
discussions, a direct theory-experiment comparison for nonlinear transmission spectra
of a single laser pulse is presented. Excellent agreement of theoretical results and
measurements is observed.
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5. Dynamics-Controlled Truncation

To extend the discussion of optically induced interband polarizations beyond the limits
of the linear exciton equation (2.13), we start again with the exact equation of motion
for the excitonic transition amplitude peh

(k,ze,zh) which has been introduced in Eq. (2.11):

i~
∂

∂t
peh

(k,ze,zh) =
(
εe
k,ze

+ εh
k,zh

)
peh

(k,ze,zh) −
∑

k′

V zezh

k−k′p
eh
(k′,ze,zh) − dehE(ze)δ(ze − zh)

+
∑

h′

deh′E(ze)
〈
ψh′†

k (ze)ψ
h
k(zh)

〉
+
∑

e′

de′hE(zh)
〈
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k (zh)ψ
e
k(ze)

〉

−
∑
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∫
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(∑

h′

〈
ψh′†

k′+q(z)ψ
h
k+q(zh)ψ

h′

k′(z)ψe
k(ze)

〉

−
∑

e′

〈
ψe′†

k′−q(z)ψ
h
k+q(zh)ψ

e′
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〉
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. (5.1)

As already discussed in Chapter 2, the dynamics of the excitonic transition amplitude
is coupled to that of the electron 〈ψe′†

k (zh)ψ
e
k(ze)〉 and hole 〈ψh′†

k (ze)ψ
h
k(zh)〉 occupation

functions and to that of higher order Coulomb correlations (lines 3-6 in Eq. (5.1)). In
order to overcome this many-particle hierarchy problem of the interacting electronic
system, a “factorization” of the expectation values in (5.1) is used. Note, that strictly
speaking not a factorization is applied here, but all the relevant expectation values are
systematically truncated in a certain order in the exciting light fields as described in the
following. This way, a consistent χ(3)-theory is derived, including all optically excited
third-order nonlinearities in the coherent limit.

Coherent excitations contain information about phase and amplitude of the exciting
light fields. In typical semiconductor layers at low temperatures (for example Helium
cooled, 4 K), and with a high crystalline perfection, the phase information is lost on
typical time scales in the range of several femtoseconds (fs) up to a few picoseconds (ps).
The loss of coherence results in a decay of the optically induced macroscopic polarization
in the semiconductor material. The coherence is destroyed by scattering processes of
the optical excitations with phonons, with incoherent, not directly optically excited
carrier populations, or by scattering at imperfections in the crystal lattice. To obtain
a theory, applicable to time scales where incoherent contributions are insignificant, the
dynamics-controlled truncation (DCT) approach7–9 is used here.
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5. Dynamics-Controlled Truncation

Within this approach a truncation of the many-particle hierarchy in a certain order
in the optical field for all contributions in Eq. (5.1) is possible. It takes advantage of
the coherence of the electronic system for exclusive optical excitation where all many-
particle effects can be classified by a certain order in the optical field. a)

For a fully coherent situation, all electronic excitations are described by a correlated
transition of a finite number of electron-hole pairs, driven by the optical field. All rele-
vant expectation values can be expressed in terms of polarization-like contributions up
to an arbitrary order in the optical field as described in Appendix A.2. Polarization-like
expectation values exclusively contain pairs of electron and hole creation or annihila-
tion operators in analogy to the excitonic polarization. Depending on the intensity of
the exciting light field the theory can be restricted to effects of a certain order in the
optical field. Thus, the general relation P = χ(E)E of the macroscopic polarization P
to the electric field E, determined by the system susceptibility χ(E), can be illustrated
by a schematic power series in terms of the electric field:

P = χ(1)E + χ(3)E3 + χ(5)E5 + . . . . (5.2)

Truncation of this power series behind the ith term results in a so-called χ(i)-theory.
Since the theory is based on a perturbation approach with respect to the exciting elec-
tromagnetic fields, it is limited to sufficiently low intensities. Nevertheless, all Coulomb
correlations that are relevant in a given order in the optical field are included in the
theoretical description. In the case of an experiment the intensity of the optical field
can be varied to obtain results in the χ(i)-limit. In principle, thinking of a power series
(5.2), a many-particle theory can be deduced up to an arbitrary order in the optical
field. However, an extension of the theory beyond third order many-particle effects
is really awkward and has, so far, only been analyzed for one-dimensional model sys-
tems28 or for a certain, selected class of higher order nonlinearities.29–31 In this work,
however, the theory is restricted to the χ(3)-limit and therefore to third order optical
nonlinearities in the material polarization P .

5.1. Equations of Motion in the Coherent χ(3)-Limit

The first line in Eq. (5.1) describes the linear contribution to the excitonic dynamics that
has extensively been studied in the preceding part of this work. Going beyond the linear
order in the external field E(z), it is coupled to the dynamics of the electron and hole
occupation functions (line 2 in Eq. (5.1)). Lines 3-6 in Eq. (5.1) contain many-particle
correlations that cannot be analyzed within an effective two-particle picture. Since
the theory is restricted to coherent optical nonlinearities, an appropriate factorization
of the occupation functions and four-point expectation values can be found by the
dynamics-controlled truncation of the many-particle hierarchy. As details are given in

a)Incoherent effects, e.g., due to non-optical electronic excitations, cannot be captured within this theory.
For details refer to Ref. 19 or to Appendix A.2.
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5.1. Equations of Motion in the Coherent χ(3)-Limit

Appendix A.2, only two essential requirements underlying the following theory shall be
summarized here:

• the electronic system is in its ground state prior to the optical excitation

• the Hamiltonian that determines the dynamics of the system is given by Eq. (2.1)
on page 13, thus, no non-optical excitation occurs and Coulomb interaction con-
serves the number of carriers in conduction and valence bands individually

Making use of these fundamental assumptions, in Appendix A.2 the following expres-
sions for the quantities in Eq. (5.1) are found.

In the coherent limit, the occupation functions

〈
ψe′†

k (zh)ψ
e
k(ze)

〉
=
∑

h

∫
dz p∗e

′h
(k,zh,z)p

eh
(k,ze,z) + O(E4) , (5.3)

〈
ψh′†

k (ze)ψ
h
k(zh)

〉
=
∑

e

∫
dz p∗eh

′

(k,z,ze)p
eh
(k,z,zh) + O(E4) (5.4)

can be factorized in terms of products of excitonic polarizations and an additional
contribution that is at least of fourth order in the external field. The “factorization” of
electron-screened and hole-screened b) transition amplitudes is given by:

〈
ψe′†

k1
(z)ψe′

k2
(z)ψh

k3
(zh)ψ

e
k4

(ze)
〉

=
∑

h′

∫
dz′p∗e

′h′

(k1,z,z′)

〈
ψh′

k1
(z′)ψe′

k2
(z)ψh

k3
(zh)ψ

e
k4

(ze)
〉

+ O(E5) , (5.5)

〈
ψh′†

k1
(z)ψh′

k2
(z)ψh

k3
(zh)ψ

e
k4

(ze)
〉

=
∑

e′

∫
dz′p∗e

′h′

(k1,z′,z)

〈
ψh′

k2
(z)ψe′

k1
(z′)ψh

k3
(zh)ψ

e
k4

(ze)
〉

+ O(E5) . (5.6)

In order to deduce a χ(3)-theory it is sufficient to take merely into account the leading
order of Eqs. (5.3)-(5.6) in Eq. (5.1). In conclusion, the relevant four-point expecta-
tion values contributing to the excitonic dynamics (5.1) can be factorized in terms of a
product of an excitonic polarization peh

(k,z,z′) and a polarization-like four-particle expec-
tation value that brings into play the correlated transition of two electron-hole pairs,
the biexcitonic transition amplitude

〈
ψh′

k2
(z)ψe′

k1
(z′)ψh

k3
(zh)ψ

e
k4

(ze)
〉
.

b)The name is connected to the structure of these expectation values. They contain the two operators
ψh

k3
(zh)ψe

k4
(ze) that describe the annihilation of one electron-hole pair and an additional electron

ψe′†
k1

(z)ψe′

k2
(z) or hole ψh′†

k1
(z)ψh′

k2
(z) number operator, respectively.
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5. Dynamics-Controlled Truncation

Regarding the structure of the resulting equations of motion, in analogy to Ref. 19, the
introduction of the biexcitonic correlation function

be
′h′

eh
(k2,z2,k1,z1)
(k4,z4,k3,z3)

=
〈
ψh′

k1
(z1)ψ

e′

k2
(z2)ψ

h
k3

(z3)ψ
e
k4

(z4)
〉

−
〈
ψh′

k1
(z1)ψ

e′

k2
(z2)

〉〈
ψh

k3
(z3)ψ

e
k4

(z4)
〉

+
〈
ψh′

k1
(z1)ψ

e
k4

(z4)
〉〈
ψh

k3
(z3)ψ

e′

k2
(z2)

〉
(5.7)

is convenient at this point. Using the leading order of the factorizations in Eqs. (5.3)-
(5.6) and the definition (5.7) together with Eq. (5.1), the equation of motion for the
excitonic transition amplitude up to third order in the optical field reads:

i~
∂

∂t
peh

(k,ze,zh) =
(
εe
k,ze

+ εh
k,zh

)
peh

(k,ze,zh) −
∑

k′

V zezh

k−k′p
eh
(k′,ze,zh) − dehE(ze)δ(ze − zh)

+
∑

e′h′

[
deh′E(ze)

∫
dz p∗e

′h′

(k,z,ze)p
e′h
(k,z,zh) + de′hE(zh)

∫
dz p∗e

′h′

(k,zh,z)p
eh′

(k,ze,z)

]

+
∑

k′e′h′

∫
dze′dzh′

[(
V

ze′zh

k−k′ p
∗e′h′

(k,ze′ ,zh′ )
− V

zh′zh

k−k′ p
∗e′h′

(k′,ze′ ,zh′ )

)
peh′

(k,ze,zh′ )
pe′h

(k′,ze′ ,zh)

+
(
V

zh′ze

k−k′ p
∗e′h′

(k,ze′ ,zh′)
− V

ze′ze

k−k′ p
∗e′h′

(k′,ze′ ,zh′ )

)
peh′

(k′,ze,zh′ )
pe′h

(k,ze′ ,zh)

]

+
∑

k′qe′h′

∫
dze′dzh′

[(
V zh′zh

q p∗e
′h′

(k′+q,ze′ ,zh′)
− V ze′zh

q p∗e
′h′

(k′,ze′ ,zh′)

)
be

′h′

eh
(k′+q,ze′ ,k

′,zh′ )

(k,ze,k+q,zh)

+
(
V ze′ze

q p∗e
′h′

(k′+q,ze′ ,zh′ )
− V zh′ze

q p∗e
′h′

(k′,ze′ ,zh′ )

)
be

′h′

eh
(k′,ze′ ,k

′+q,zh′ )

(k+q,ze,k,zh)

]
.

(5.8)

This equation of motion contains all coherent third order effects and therefore reveals
exact results for sufficiently weak electromagnetic fields. The definition (5.7) of the
biexcitonic correlation function is advantageous since Eq. (5.8) explicitly contains all
contributions that can be obtained from a Hartree-Fock factorization11 of the four-point
expectation values in Eq. (5.1) in analogy to the Semiconductor Bloch Equations given
in Ref. 11. These equations can be solved self-consistently up to an arbitrary order in
the optical field but only include effective two-particle effects in the description of the
electronic many-particle system. Consistent and exact results are only obtained in the
linear limit as it has been used throughout the previous chapters of this work.

Line 2 in Eq. (5.8) describes a renormalization of the Rabi energy dehE for the excitonic
transition amplitude peh

(k,ze,zh) resulting from the phase-space filling (Pauli-blocking).
Hence, the dipole coupling strength is effectively reduced by the coherent contributions
to the electron and hole occupation functions. Lines 3 and 4 contain the renormalization
of the electron-hole Coulomb interaction which is already present in the linearized
version of Eq. (5.1) and a renormalization of the band-gap energy for coherent excitation
up to third order in the optical field. Here, all contributions beyond the Hartree-Fock
result are due to the influence of correlated four-particle transitions and are given by
the coupling to the biexcitonic correlation function in lines 5 and 6 of Eq. (5.8). The
use of the definition (5.7) allows a more detailed analysis of the theory. Within this
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5.1. Equations of Motion in the Coherent χ(3)-Limit

formulation, an explicit occurrence of correlated four-particle transitions in Eq. (5.8) is
obtained. Therefore, during the numerical evaluation the distinction of effective two-
particle and correlated four-particle (biexcitonic) nonlinearities that are beyond a third
order Hartree-Fock theory is possible.

To describe the coupling of the excitonic dynamics to the biexcitonic correlation function
an equation of motion for the latter one is required. We are interested in third order
contributions to the excitonic transition amplitude peh

(k,ze,zh) in Eq. (5.8). Since the
excitonic transition amplitude itself is at least of first order in the optical field, an
equation of motion for the biexcitonic correlation functions be

′h′

eh
(k2,z2,k1,z1)
(k4,z4,k3,z3)

in Eq. (5.8)
that contains at least all second order contributions is required. Hence, all contributions,
being in leading order beyond the second order, are neglected in the equation of motion
for the biexcitonic correlation function. Using Heisenberg’s equation of motion (2.10), a
straight forward but somewhat lengthy calculation yields the dynamics of the biexcitonic
correlation function (5.7) that is needed in Eq. (5.8):

i~
∂

∂t
be

′h′

eh
(k′,ze′ ,k

′+q,zh′ )

(k+q,ze,k,zh) =
(
εe
k+q,ze
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k,zh

+ εe′

k′,ze′
+ εh′

k′+q,zh′

)
be

′h′

eh
(k′,ze′ ,k

′+q,zh′ )

(k+q,ze,k,zh)

+
∑

q′
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zh′zh

q′ be
′h′
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′h′
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′+q,zh′ )
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′h′
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′+q+q′,zh′)
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ze′zh
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′h′
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′+q+q′,zh′)
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]
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V zh′zh
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(k′,ze′ ,zh′)

)
peh

(k,ze,zh)

−
(
V

zh′zh

k−k′ p
e′h
(k′,ze′ ,zh) − V
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)
peh′

(k′+q,ze,zh′)
. (5.9)

In second order for the biexcitonic correlation function, the only dynamic quantity that
enters the source terms (lines 5-8) of this equation is the excitonic transition amplitude
peh

(k,ze,zh). Therefore a coupled but closed system of equations (5.8), (5.9) to calculate
the coherent semiconductor response up to third order in the optical field is found. In
analogy to the exciton equation (3.2) on page 27, the homogeneous part of Eq. (5.9)
can be abbreviated by introduction of a biexcitonic Hamiltonian Hehe′h′

XX :
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∂

∂t
be

′h′

eh
(k′,ze′ ,k

′+q,zh′ )
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)
peh

(k,ze,zh)

−
(
V

zh′zh

k−k′ p
e′h
(k′,ze′ ,zh) − V

zh′ze′

k−k′ p
e′h
(k,ze′ ,zh)

)
peh′
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.
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This equation is equivalent to an inhomogeneous time-dependent Schrödinger equation
for a two-electron-two-hole system. The biexcitonic Hamiltonian Hehe′h′

XX determines the
spectral properties of biexcitonic correlations, including a bound biexciton state and the
exciton-exciton scattering continuum. Note, that the inhomogeneity here is not due to
the optical fields but due to products of two excitonic transition amplitudes, hence the
biexcitonic correlation function is not directly optically driven.

The classification of many-particle effects by the number of involved electron-hole pairs
is, strictly speaking, only valid for a fully coherently driven system. Therefore, a system
is assumed where no non-optical excitation and no dephasing of the coherent polariza-
tions due to incoherent scattering processes occurs. Only keeping these assumptions in
mind, Eqs. (5.8) and (5.9) form a closed set of equations. Otherwise there would be
a coupling to non polarization-like quantities as for example incoherent contributions
to the electron or hole occupation functions that cannot be factorized into products of
polarization-like expectation values.7,19 However, for the numerical evaluation of the
equations of motion (5.8) and (5.9), the introduction of dephasing processes for the
coherent excitations on a phenomenological level becomes necessary. In principle, the
inclusion of dephasing processes on a phenomenological level destroys the exact rela-
tions (5.3)-(5.6) that are underlying the theory presented here. Nevertheless, in the
past it has been successfully applied to analyze optical experiments for quantum-well
systems20,29, 58 on an ultra short time scale. So one should be aware of the fact that
the exact relations are destroyed by the introduction of a dephasing but still hold in a
good approximation on ultra short time scales. Since two excitonic polarizations con-
tribute to the biexcitonic correlation function, in this work a dephasing constant for
the biexcitonic correlation function is used that is two times the corresponding dephas-
ing constant for the excitonic polarization. An extension of the theory systematically
treating incoherent electronic contributions and dephasing processes is even more in-
volved and can be deduced using the nonequilibrium Green’s function technique.32,33

This theory contains the DCT theory in the limit of weak optical fields and on ultra
short time scales where incoherent occupations become insignificant. Nevertheless, a
fundamental drawback of the resulting theory is the strongly increased numerical effort.

So far, a direct solution of the coupled exciton-biexciton dynamics in momentum space
has only been done for a quasi two-dimensional quantum-well system.20 Due to the finite
spatial extension of the considered system here, even the direct solution of equation (5.8)
for the excitonic transition amplitude in its linearized form turns out to be numerically
very demanding; the direct solution of (5.8) and (5.9), including the full biexcitonic
problem, is numerically not within the realms of possibility. Nevertheless, a transition to
the exciton eigenbasis allows a solution of the coupled exciton-biexciton-light dynamics.
Therefore, in the next section the expansions for the excitonic and biexcitonic problem
in terms of exciton eigenstates and the resulting equations of motion for the time
dependent expansion coefficients are deduced. Additionally, this allows again, as already
used in Section 3.2 for the exciton problem, a separation of the stationary quantum
mechanical two- and four-particle problem from the description of the system dynamics.
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5.2. The Exciton Basis

In the following we focus on excitations of the electronic system in the vicinity of
the fundamental excitonic resonance. The description of the exciton as well as the
biexciton problem is done within the exciton eigenbasis. In linear optics, in Section 3.2,
the restriction to only a finite number of exciton states φm(k, ze, zh) turned out to be
a very good approximation to the full problem around the lowest excitonic resonances.
However, in nonlinear optics, things are more complicated. First of all we are not able
to calculate the exact solution for the biexcitonic problem as a reference. In addition
to this, unfortunately but naturally, the two-electron-two-hole Hamiltonian Hehe′h′

XX in
Eq. (5.9) couples different exciton eigenstates since the two-electron-two-hole Coulomb
interaction is not diagonal with respect to the two-exciton product basis. Therefore,
in principle, an infinite number of exciton eigenstates φm(k, ze, zh) contributes to each
biexciton state. Nevertheless, being interested in biexcitonic contributions to optical
spectra in the vicinity of the lowest excitonic resonances only, a truncation of the
exciton eigenbasis yields meaningful results here. For two-dimensional quantum-well
systems a restriction of the exciton basis to the exciton ground state, the 1s state,
has successfully been applied in the past.29,58, 66, 68 Around the 1s exciton resonance
it captures the fundamental many-particle effects and dominant contributions to the
nonlinear optical response of the system. An extension of this description of excitonic
and biexcitonic nonlinearities to systems with finite spatial extension in the third space
dimension is presented here.

The expansion of the excitonic transition amplitude peh
(k,ze,zh) in terms of exciton eigen-

states φm(k, ze, zh), which are calculated with microscopic boundary conditions in Sec-
tion 3.2, yields

peh
(k,ze,zh)(t) =

∑

m

peh
m (t)φm(k, ze, zh) . (5.10)

The time-dependent expansion coefficients peh
m (t) are connected to the corresponding in-

terband transitions in the two-band model. Since electron and hole one-particle energies
and their Coulomb interaction in (5.9) do not depend on the z-component of electron
and hole angular momenta (e, h), spin-independent exciton eigenstates φm(k, ze, zh) are
used in analogy to Section 3.2.

For the biexcitonic problem, following the ansatz in Ref. 19, symmetric and antisym-
metric linear combinations of two-exciton product states are used with respect to inter-
change of electrons or holes, respectively. This is necessary to account for the symmetry
of the resulting four-fermion states in a truncated exciton basis as discussed below. Us-
ing the following expansion for the biexcitonic correlation function proper antisymmetry
with respect to particle interchange is guaranteed for each term in the expansion with
fixed quantum numbers n,m.
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Furthermore, in analogy to the Hydrogen molecule problem, a classification of the
contributions to the biexcitonic correlation function c)

be
′h′λ

eh
(k2,z2,k1,z1)
(k4,z4,k3,z3)

=
∑

nm

[
φn(αk4 + βk3, z4, z3)φm(αk2 + βk1, z2, z1)b

ehe′h′λ
nm (k4 − k3)

−λφn(αk2 + βk3, z2, z3)φm(αk4 + βk1, z4, z1)b
ehe′h′λ
nm (k2 − k3)

]

(5.11)

according to the electronic singlet (λ = −1) and triplet (λ = +1) configuration is
convenient, with

be
′h′

eh
(k2,z2,k1,z1)
(k4,z4,k3,z3)

= be
′h′+

eh
(k2,z2,k1,z1)
(k4,z4,k3,z3)

+ be
′h′−

eh
(k2,z2,k1,z1)
(k4,z4,k3,z3)

.

Using this definition, the equations of motion for the biexcitonic expansion coefficients
behe′h′λ
nm (q) in Eq. (5.11) are decoupled for λ = −1 and λ = +1, since the total electron

spin is conserved. Here α = m∗
h/M

∗ and β = m∗
e/M

∗ are the ratio of the hole and
the electron mass to the total exciton mass M∗ = m∗

e + m∗
h, respectively. Regarding

the in-plane motion the internal exciton quantum numbers n,m only account for the
discrete exciton spectrum due to the electron-hole pair relative motion. Therefore, to
include a non-vanishing in-plane center of mass momentum q for each single exciton, the
expansion coefficients behe′h′λ

nm (q) depend on n,m and the two-exciton relative momentum
q. For further details regarding this expansion see Appendix A.3.

Inserting the expansions (5.10) and (5.11) into Eqs. (5.8) and (5.9), a somewhat lengthy,
but straightforward calculation yields the closed set of equations of motion for the
excitonic peh

m ,

i~
d
dt
peh

m =εmp
eh
m − deh

∫
dzE(z)

∑

k

φ∗
m(k, z, z)

+
∑

m′ne′h′

p∗e
′h′

m′

[
pe′h

n

∫
dze deh′E(ze)R

1
mm′n(ze) + peh′

n

∫
dzh de′hE(zh)R

2
mm′n(zh)

]

+
∑

m′nn′e′h′

p∗e
′h′

m′ peh′

n pe′h
n′ V HF

mm′nn′ +
∑

ne′h′

p∗e
′h′

n

∑

qn′m′λ

WXXλ∗
n′m′mn(q, 0) behe′h′λ

n′m′ (q) ,

(5.12)

and biexcitonic behe′h′λ
nm (q),

i~
d
dt
behe′h′λ
nm (q) =

∑

n′m′q′

HXXλ
nmn′m′(q,q′)behe′h′λ

n′m′ (q′)

+
1

2

∑

n′m′rsq′

[
(1 − λS)−1

nmrs(q,q
′)WXXλ

rsn′m′(q′, 0)
[
peh

n′pe′h′

m′ + λpe′h
n′ peh′

m′

]]
,

(5.13)

c)The time-dependence of the excitonic peh
m (t) and biexcitonic behe′h′λ

nm (q, t) expansion coefficients is not
made explicit in the following.
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coefficients. Since all numerical evaluations in the following are performed in the exciton
eigenbasis, the expansion coefficients peh

m and behe′h′λ
nm (q) will be referred to as excitonic

transition amplitude (excitonic polarization) and biexcitonic correlation function, re-
spectively. With the definitions q+ = q + q′ and q− = q − q′ the Coulomb matrix
elements in the two-exciton product basis read:

WXXλ
nmn′m′(q,q′) = WC

nmn′m′(q,q′) + λ ·WXC
nmn′m′(q,q′) , (5.14)

with

WC
nmn′m′(q,q′) =

∑

kk′

∫
dzedzhdze′dzh′ φ∗

n(k, ze, zh)φ
∗
m(k′, ze′ , zh′)

×
[
V

zh′zh

q− φn′(k + βq−, ze, zh)φm′(k′ − βq−, ze′, zh′)

+V
ze′ze

q− φn′(k − αq−, ze, zh)φm′(k′ + αq−, ze′ , zh′)

−V ze′zh

q− φn′(k + βq−, ze, zh)φm′(k′ + αq−, ze′, zh′)

−V zh′ze

q− φn′(k − αq−, ze, zh)φm′(k′ − βq−, ze′ , zh′)
]
, (5.15)

for the direct part, and

WXC
nmn′m′(q,q′) =

∑

kk′

∫
dzedzhdze′dzh′ φ∗

n(k + αq−, ze, zh)φ
∗
m(k′ + βq+, ze′, zh′)

×
[
φn′(k′, ze′, zh)

[
V zezh

k−k′φm′(k′ + αq− + βq+, ze, zh′)

−V zh′zh

k−k′ φm′(k + αq− + βq+, ze, zh′)
]

+φn′(k, ze′, zh)
[
V

zh′ze′

k−k′ φm′(k + αq− + βq+, ze, zh′)

−V zeze′

k−k′φm′(k′ + αq− + βq+, ze, zh′)
]]

(5.16)

for the two-exciton exchange interaction, respectively. The required Hartree-Fock
Coulomb matrix elements in Eq. (5.12) are obtained from the two-exciton exchange
matrix elements (5.16) in the q → 0, q′ → 0-limit:

V HF
mm′nn′ = WXC∗

n′nmm′(0, 0) .

The matrix elements for the phase space filling corrections (Pauli-blocking) to the Rabi-
energy are:

R1
mm′n(z) =

∑

k

∫
dz′dz′′φ∗

m(k, z, z′′)φm′(k, z′, z)φn(k, z′, z′′) , (5.17)

R2
mm′n(z) =

∑

k

∫
dz′dz′′φ∗

m(k, z′′, z)φm′(k, z, z′)φn(k, z
′′, z′) . (5.18)

77



5. Dynamics-Controlled Truncation

The homogeneous part of the equation of motion (5.13) for the biexcitonic coefficients
behe′h′λ
nm (q) has the formal structure of a two-electron-two-hole Schrödinger equation.

Diagonalization of the biexciton Hamiltonian matrix,

HXXλ
nmn′m′(q,q′) =

(
εn(q) + εm(q)

)
δnn′δmm′δqq′

+
∑

rsk

(1 − λS)−1
nmrs(q,k)WXXλ

rsn′m′(k,q′) , (5.19)

reveals information about the energy spectrum of the interacting four-particle system.
The εn(q) are the exciton eigenenergies for non-vanishing in-plane COM momentum q,
given in Appendix A.3. The presence of the exciton overlap matrix

Snmn′m′(q,q′) =
∑

k

∫
dzedzhdze′dzh′ φ∗

n(k + αq, ze, zh)φ
∗
m(k + q′ + βq, ze′ , zh′)

×φn′(k + αq′, ze′ , zh)φm′(k + q + βq′, ze, zh′)
(5.20)

is due to the non-othonormality of the chosen set of basis states (5.11). In general, to
find an exact solution of a quantum mechanical problem it is not necessary to use a
non-orthogonal set of basis states, since it can always be transformed into an ortho-
normal one. In praxis, where a truncation of the considered basis is necessary, the
use of a non-orthogonal set of basis states may be advantageous. Here, working in a
truncated basis, the required fermionic symmetry of the biexciton states is no longer
automatically fulfilled, in contrast to the result with respect to a complete two-exciton
product basis. d) By a proper choice of the basis states, artifacts due to the trunca-
tion of the basis can be reduced. Therefore, for the description of identical interacting
particles, the introduction of non-orthogonal basis states (5.11) is necessary to avoid a
violation of the fermionic symmetry of the resulting biexciton states in the truncated
Hilbert space. A similar result is obtained for a two-dimensional system in Ref. 67,
but here the matrix elements contain the additional space-dependence for the spatially
inhomogeneous situation.

The evaluation of the Coulomb matrix elements in the two-exciton product basis turns
out to be numerically very demanding. Details are given in Appendix B.3. Especially
parts of the exchange interaction matrix element WXC

nmn′m′(q,q′) (5.16) with its four-fold
real space integral cannot be factorized at all. In order to guarantee reliable numerical
results, an alternative technique is briefly discussed here. Expansion of the real space
dependence of the exciton eigenfunctions φm(k, ze, zh) in terms of products of one-
particle eigenstates χi(ze) for electrons and ϕj(zh) for holes,

φm(k, ze, zh) =
∑

ij

am
ij (k)χi(ze)ϕj(zh) , (5.21)

d)Working in a complete two-exciton product basis, fermionic symmetry for the resulting two-electron-
two-hole (biexcitonic) states is automatically fulfilled, since only pairs of identical particles contribute
to these states.
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5.2. The Exciton Basis

yields a representation where multiple subbands i, j contribute to the matrix elements
(5.15)-(5.18), (5.20). The expansion coefficients are given by

am
ij (k) =

∫
dzedzhχ∗

i (ze)ϕ
∗
j(zh)φm(k, ze, zh) . (5.22)

Depending on the given layer thickness, an evaluation of the matrix elements accord-
ing to the expansion (5.21) may be advantageous. A more detailed discussion of this
approach is given in Appendix B.3.2 and the influence of higher subbands i, j is inves-
tigated in Section 5.3.2.

5.2.1. Angular Momentum Decomposition

Following Section 3.1, in linear optics only excitons with in-plane s-symmetry are ex-
cited by the dipole coupling to an optical field which is homogeneous in the x-y-plane.
Coulomb interaction for each single electron-hole pair does not induce transitions to
exciton states with non in-plane s-symmetry as shown in Appendix A.1. Therefore a
restriction of the theory to s-shaped states is exact in linear optics.

In nonlinear optics a similar restriction to s exciton states in the expansions (5.10) and
(5.11) is no longer exact. Though not directly optically excited, in principle, exciton-
exciton Coulomb interaction yields contributions to the excitonic polarization peh

(k,ze,zh)

from non s-shaped exciton states. Nevertheless, for quantum-well systems a restriction
of excitonic and biexcitonic nonlinearities to the 1s subspace has successfully been
applied to different excitation conditions.29,58, 66 As already discussed in Section 5.2, also
in the nonlinear optical regime, the large spectral separation of the fundamental exciton
resonance (1s) from the remaining part of the exciton spectrum allows its isolated
description in a good approximation as long as no other exciton states are directly
optically excited. To concentrate on the 1s exciton resonance and its polariton modes,
in the following the expansions (5.10) and (5.11) are restricted to excitons with in-plane
1s symmetry. e)

To realize the above mentioned approximation, an angular momentum decomposition
of the exciton-exciton relative motion in the biexcitonic correlation function

behe′h′λ
nm (q) =

∑

µ

eiµφqbehe′h′λµ
nm (q) , (5.23)

and the matrix elements

Mnmn′m′(q,q′) =
∑

µµ′

eiµφqMµµ′

nmn′m′(q, q
′)e−iµ′φq′ (5.24)

is used, following Ref. 67.

e)Note, that for the slab geometry the lower energy part of the exciton spectrum results from the 1s
exciton state of the bulk material due to spatial confinement in the z-direction. The in-plane rotation
invariance is conserved in the confinement geometry while the resulting states exhibit different space
dependencies in the z-direction.
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5. Dynamics-Controlled Truncation

Here Mnmn′m′(q,q′) represents one of the matrix elements in the two-exciton product
basis needed in the equations of motion (5.12) and (5.13), for instance WXXλ

nmn′m′(q,q′)
(5.14). The exciton eigenfunctions φm(k, ze, zh) are eigenfunctions of the in-plane an-
gular momentum operator with quantum numbers µn and µm for the two contributing
excitons in states n,m. Taking into account the angular momentum µ for the two-
exciton relative motion, the total in-plane angular momentum of the two-exciton system
is µtot = µ+µn +µm. Due to the rotation invariance of the semiconductor heterostruc-
ture around the z-axis, the in-plane total angular momentum µtot of the two-exciton
system is conserved. Consequently, the Fourier coefficients Mµµ′

nmn′m′(q, q′) in Eq. (5.24)
are block-diagonal for fixed µtot:

Mµµ′

nmn′m′(q, q
′) = δµ+µn+µm,µ′+µn′+µm′

1

2π

2π∫

0

dφ′ eiµ′φ′

Mnmn′m′(q, 0, q′, φ′) .

The Coulomb coupling of exciton states with different in-plane symmetry is neglected
according to the discussion at the beginning of this section. Then usage of the ex-
pansions (5.23) and (5.24) with the equation of motion (5.13) yields decoupled sets of
equations for the expansion coefficients behe′h′λµ

nm (q) for fixed µ. Due to the system sym-
metry, including the in-plane homogeneity of the exciting optical fields, the in-plane
total angular momentum µtot vanishes for each biexciton. Hence, the only relevant
matrix elements in the two-exciton product basis read

Mnmn′m′(q, q′) = M00
nmn′m′(q, q′) =

2π∫

0

dφ′
q

2π
Mnmn′m′(q, 0, q′, φq′) , (5.25)

and only the behe′h′λ
nm (q) = behe′h′λµ=0

nm (q) contribution to the biexcitonic correlation func-
tion (5.23) is driven. Therefore, restricting the expansions (5.10) and (5.11) to in-plane
s-shaped exciton states and hence using all matrix elements in their angular averaged
version (5.25), the projection of the equations of motion (5.12) and (5.13) to the in-plane
s subspace of exciton states is obtained.

5.3. Matrix Elements and Biexciton Binding Energy

The main purpose of this work is not to present a new or best method to calculate the
biexciton ground state energy but to describe the fundamental many-particle effects
important for coherent optical nonlinearities including propagation effects.

Nevertheless care must be taken to reach good numerical convergence of the biexciton
binding energy to guarantee a proper evaluation of the Coulomb matrix elements in
the two-exciton product basis. Results are presented for a GaAs model system with
parameters given in Table 3.1 on page 30. In principle, the results quantitatively depend
on the material parameters, especially on the electron-hole mass ratio m∗

e/m
∗
h.

19 To
make the following discussion as expressive as possible, all energies are normalized to
the bulk exciton binding energy EX

b and all lengths to the exciton Bohr-radius aX
0 .
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Figure 5.1: On-site matrix element WC
0000(q, q

′) of the direct exciton-exciton Coulomb inter-
action (5.15). Left: Surface plot. Right: Contour plot.

5.3.1. Coulomb Matrix Elements

This chapter is dedicated to the exciton-exciton Coulomb interaction in the two-exciton
product basis. For a fixed set of internal exciton quantum numbers n,m, n′, m′, the
Coulomb matrix elements WC

nmn′m′(q, q′) (5.15) and WXC
nmn′m′(q, q′) (5.16) can be classi-

fied by on-site (n = m = n′ = m′), inter-site diagonal (n = n′ and m = m′ and n 6= m),
and off-diagonal blocks (n 6= n′ or m 6= m′).

Figures 5.1 and 5.2 show on-site blocks of the direct WC
nmn′m′(q, q′) and of the exchange

WXC
nmn′m′(q, q′) Coulomb matrices for a GaAs layer with thickness of 5 aX

0 . In both fig-
ures, on the left the dependence of the Coulomb interaction on the two-exciton relative
momenta q, q′ is shown in a surface plot. On the right, a contour plot corresponding
to the same data as the surface plot is depicted. Examples for inter-site diagonal and
off-diagonal blocks are shown in Figs. B.2 to B.5 on page 137 in Appendix B.3.1.

For the spatially inhomogeneous system the direct Coulomb matrix elements do not
vanish in the q → 0, q′ → 0-limit, even not for the on-site matrix element WC

0000(q, q
′)

shown in Fig. 5.1. Due to the spatial inhomogeneity, according to Eq. (5.21), several
subbands contribute to the exciton states, in contrast to the results in Ref. 67 for the
two-dimensional quantum-well model. Since all Coulomb matrix elements in the two-
exciton product basis vanish for large momenta q, q′, their contributions for q, q′ > 20 aX

0

are neglected in the following calculations. Note, that all the displayed matrix elements
have a similar magnitude. All of them have to be taken into account and are of equal
importance for the calculations in the remaining part of this work. More details con-
cerning the evaluation of the matrix elements are given in Appendix B.3.1.
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Figure 5.2: On-site matrix element WXC
0000(q, q

′) of the exchange exciton-exciton Coulomb
interaction (5.16). Left: Surface plot. Right: Contour plot.

5.3.2. Role of the Dimensionality

The theory that has been deduced in the previous part of this work is suitable for
the description of excitons and biexcitons in a semiconductor layer with a thickness
situated somewhere in between the two limiting cases of a bulk semiconductor and a
two-dimensional quantum-well. In order to complete the discussion of the previous
section, the dependence of the biexciton binding energy EXX

b on the layer thickness is
discussed.

The exciton EX
b as well as the biexciton EXX

b binding energy strongly depend on the
thickness L of the semiconductor layer in which electrons and holes are confined, Fig. 2.1
and Ref. 69. Additionally, in the two-exciton basis, the biexciton binding energy EXX

b

depends on the number of exciton states that are taken into account to build the
biexciton Hamiltonian matrix HXXλ

nmn′m′(q,q′) (5.19). The number of exciton states is
determined by the energy level spacing of the 1s shaped states due to the spatial con-
finement in the z-direction which depends on the layer thickness. There is one state
for a layer thickness L of one and two exciton Bohr radii, two states for L = 3 aX

0 , and
three for L = 4 aX

0 and L = 5 aX
0 . The bound biexciton state is found in the electron

singlet subspace of the biexciton Hamiltonian (5.19). f)

The dependence of the calculated exciton (×) and biexciton (◦) binding energy on
the layer thickness L is displayed in Fig. 5.3. The corresponding data are given in
Table 5.1 on page 86. In the semiconductor layer with finite thickness, by defini-
tion, the exciton binding energy is measured relative to the effective band-gap energy

f)This result is obtained here in analogy to the Hydrogen molecule problem. But note, that for the
solution of the two-electron-two-hole problem a Born-Oppenheimer approximation cannot be applied
due to the large electron-hole mass ratio m∗

e/m
∗
h.
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Figure 5.3: The figure shows the dependence of exciton EX
b (L) and biexciton EXX

b (L) binding
energy on the layer thickness L. The exciton binding energy (×) is given with the vertical axis
on the left and ten times the biexciton binding energy (◦) is given with the vertical axis on
the right. Results are normalized to the bulk exciton binding energy EX

b (3D), corresponding
to the data in Table 5.1 on page 86.

Eeff
gap(L) = Egap(3D) + εe

1(L) + εh
1(L) for a non-interacting electron-hole pair as illus-

trated in Fig. 5.4 (a). εe
1(L) and εh

1(L) are the lowest one-particle energies for electrons
and holes, resulting from the confined motion in the z-direction in a layer with thick-
ness L. g) According to the above discussion, the biexciton binding energy EXX

b (L) is
measured relative to the lowest energy 2Eeff

gap(L) − 2EX
b (L) of two isolated excitons as

illustrated in Fig. 5.4 (b).

With decreasing layer thickness, the quantum confinement yields an increase of the
exciton as well as of the biexciton binding energy. The biexciton binding energy is
about 10 % of the exciton binding energy for the investigated layer thicknesses which
reproduces Haynes’ rule of thumb70 for this ratio. The ratio slightly increases with
decreasing layer thickness as already reported in Refs. 69,71. For the calculations in the
two-exciton product basis the influence of excited exciton states on the biexciton binding
energy becomes more important for increasing layer thickness due to their decreasing
energy level spacing. For 4 aX

0 the inclusion of two additional excited states increases
the biexciton binding energy by 9.4 % whereas for 5 aX

0 we encounter an increase of
10.5 %.

g)For thin layers the spatial confinement yields a pronounced shift of the lowest one-particle energies
εe1(L), εh1(L), namely the lowest subbands for electrons and holes in the heterostructure.
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Figure 5.4: Schematic illustration of exciton and biexciton binding energy. (a) Visualization
of the exciton binding energy in a bulk material and in a semiconductor layer with finite
thickness L. (b) Visualization of the biexciton binding energy in a semiconductor layer with
finite thickness L. For a detailed discussion see text.

According to Eq. (5.21), the influence of higher one-particle subbands i, j in the eval-
uation of the matrix elements HXXλ

nmn′m′(q,q′) in the two-exciton product basis on the
biexciton binding energy EXX

b (L) is shown in Fig. 5.5. One exciton state (1X) is in-
cluded in these calculations. The biexciton binding energies EXX

b (L, 1X) are normalized
to the result EX

b,max(L, 1X) obtained for the inclusion of five electron and hole subbands
i, j for each layer thickness L. The corresponding data are given in Table 5.2 on page 87.

For the considered layer thicknesses we find a convergence of the biexciton binding
energy with increasing number of included subbands, while the importance of higher
subbands is increased with increasing layer thickness. For instance, for 1 aX

0 layer thick-
ness more than 90 % of the binding energy are already reached with only the inclusion
of the lowest subband, whereas for 5 aX

0 the contributions from higher subbands increase
the binding energy by about 60 %.

According to Eq. (5.22), the contributions a1
ij(k)

h) of the subbands i, j to the exciton
ground state wave function φ1(k, ze, zh) are shown in Fig. 5.6 (a) for a layer thickness of
1 aX

0 and in Fig. 5.6 (b) for 5 aX
0 . Only contributions from subbands i, j with a1

ij(0)·100 ≥
a1

00(0) are visualized. For a layer thickness of 1 aX
0 the exciton ground state wave function

is clearly dominated by the contribution a1
00(k) from the lowest electron (i = 0) and

hole (j = 0) subbands. For a layer thickness of 5 aX
0 the contributions from higher

subbands are increased due to their decreased energy level spacing as already observed
in Fig. 5.5 for the biexciton binding energy.

h)Following Section 3.1 the exciton ground state wave function exhibits an in-plane rotation invariance
and therefore only depends on the modulus k of the in-plane wave vector k.
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Figure 5.5: Dependence of the biexciton binding energy EXX
b (L, 1X) on the number of

subbands i, j in the expansion (5.21), while one exciton state is included in the calculations.
The symbols correspond to one (×), two (+), three (∗), four (�), and five (◦) included
subbands, respectively. For each layer thickness L the results are normalized to the biexciton
binding energy EXX

b,max(L, 1X) that is obtained by inclusion of five subbands. The data are
given in Table 5.2 on page 87.

The description of biexciton states in terms of two-exciton product states yields phys-
ical meaningful results for the investigated systems. Nevertheless with a truncated set
of exciton basis states, especially the biexciton binding energy is underestimated com-
pared to, e.g., variational approaches. Variational approaches commonly yield the best
results for the ground state energy of a given system.19 The approach used here, also
contains the description of excited biexciton states being important for the description
of optical properties of the system. Alltogether, the biexciton binding energy is found
to be about 10 % of the corresponding exciton binding energy, with a slightly grow-
ing ratio for decreasing sample thickness.69,70 However, recent investigations predict a
somewhat larger growth of the biexciton-exciton binding energy ratio for layer thick-
nesses approaching the quantum-well limit.72–74 In Section 7.2 the 20 nm ZnSe layer,
introduced in Section 4.2, is investigated in the nonlinear optical regime. Indeed, our
results show a slightly too small biexciton binding energy compared to the experiment.
All other features in the optical spectra are well-described by the theoretical results.

So far, a theory for nonlinear polariton propagation in spatially inhomogeneous semi-
conductors in the coherent limit has been introduced in this chapter. It incorporates
both, propagation effects and excitonic as well as biexcitonic nonlinearities on a mi-
croscopic level. Microscopic boundary conditions for the induced material polarization
and the optical fields have been properly included in the description. The calculation
of transmission spectra for single light pulses and in pump and probe or in four wave
mixing geometry is covered in the next chapter.
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Figure 5.6: The figure shows the contributions |a1
ij(k)| from electron (i) and hole (j) subbands

to the exciton ground state wave function φ1(k, ze, zh), according to the definition in Eq. (5.22).
(a) a1

11(k) (solid line), a1
13(k) (dashed line), and a1

22(k) (dotted line) for a layer thickness of
1 aX

0 . (b) a1
11(k) (solid line), a1

13(k) (dashed line), and a1
22(k) (dotted line) for a layer thickness

of 5 aX
0 . The inset shows from top to bottom for k = 0 the subband contributions a1

24(k),
a1

33(k), a
1
31(k), a

1
44(k), a

1
35(k), and a1

42(k).

L[aX
0 ] EX

b (L)/EX
b (3D) EXX

b (L)/EX
b (3D) EXX

b (L)/EX
b (L)

1 2.1585 0.2127 0.0985
2 1.6873 0.1512 0.0896
3 1.4568 0.1308 0.0898
4 1.3243 0.1170 0.0883
5 1.2412 0.1038 0.0836

Table 5.1.: Dependence of exciton EX
b (L) and biexciton EXX

b (L) binding energy on the layer
thickness L. Energies are normalized to the bulk exciton binding energy EX

b (3D) and lengths
to the bulk exciton Bohr radius aX

0 .
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subbands N EXX
b (L)/EX

b (3D) EXX
b (L, 1X)/EX

b (3D)

1 aX
0 thickness:

1 0.2022 0.2022
2 0.2070 0.2070
3 0.2121 0.2121
4 0.2126 0.2126
5 0.2127 0.2127

2 aX
0 thickness:

1 0.1235 0.1235
2 0.1353 0.1353
3 0.1483 0.1483
4 0.1505 0.1505
5 0.1512 0.1512

3 aX
0 thickness:

1 – 0.0823
2 0.1093 0.0995
3 0.1234 0.1180
4 0.1293 0.1223
5 0.1308 0.1238

4 aX
0 thickness:

1 – 0.0557
2 0.0833 0.0759
3 0.1042 0.0972
4 0.1136 0.1038
5 0.1170 0.1063

5 aX
0 thickness:

1 – 0.0374
2 0.0622 0.0583
3 0.0869 0.0804
4 0.0985 0.0891
5 0.1038 0.0925

Table 5.2.: Dependence of the biexciton binding energy EXX
b (L) on the number of considered

subbands N and on the number of included exciton states for layer thicknesses 1 aX
0 ≤ L ≤

5 aX
0 . Results are given in the second column for the maximum number of exciton states (for

explanation see text at the beginning of Section 5.3.2), and in the third column with only
one of them (1X) taken into account, respectively. The energies are normalized to the bulk
exciton binding energy EX

b (3D). In the case of 3 aX
0 ≤ L ≤ 5 aX

0 , for calculations including
excited exciton states (second column), a description with only one subband is not meaningful
because of the complicated spatial structure of the excited exciton wave functions.
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6. Nonlinear Optics

In linear optics, the two excitonic transitions driven by light fields with opposite circular
polarization are not coupled to each other. Consequently, the total excitonic polariza-
tion P(z, t) in Eq. (3.3) on page 28 is just the sum of the two contributions P±(z, t)
excited by light with opposite circular polarization vectors e±, according to the dipole
selection rules (1.1) on page 11. Therefore, in Part I circularly polarized optical fields
have been considered. Here, in the nonlinear regime, the different dipole-allowed exci-
tonic transitions are coupled to each other by the four-particle (biexcitonic) correlations
in Eq. (5.8). In this chapter the dependence of optical properties on the polarization of
the exciting light fields plays an important role. Before the equations of motion for the
description of different optical setups are deduced in Sections 6.2 to 6.5, in Section 6.1
a short introduction to the polarization of light is given.

6.1. Polarization of Light

We start again with the basis vectors for circular polarization in the x-y-plane,
e± = 1√

2
(ex ± iey). In terms of these basis vectors the standard Cartesian basis

vectors are

ex =
1√
2
(e+ + e−) , ey =

1

i
√

2
(e+ − e−) .

A normalized linear polarization vector ex0y0, which encloses an angle φx0y0 = arctan y0

x0

with the x-axis, is given by

ex0y0 =
x0ex + y0ey√

x2
0 + y2

0

=
1√

2(x2
0 + y2

0)
((x0 − iy0)e+ + (x0 + iy0)e−) = A+e+ + A−e− ,

in terms of the circular polarization vectors and with amplitudes

A+ =
x0 − iy0√
2(x2

0 + y2
0)
, A− =

x0 + iy0√
2(x2

0 + y2
0)
. (6.1)

The above definitions are advantageous as they naturally contain the amplitudes A+, A−
for circularly polarized light components. This allows a direct evaluation of the dipole
selection rules, given by Eq. (1.1), even for calculations with linear light polarization
expressed by the coefficients x0, y0.
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In general, light pulses with linear polarization are assumed:

E(z, t) = E+(z, t)e+ + E−(z, t)e− .

The amplitudes E±(z, t) are chosen according to Eq. (6.1). With the dipole selection
rules, two interband transitions are excited in the spectral range of the heavy-hole
exciton resonance. The relevant excitonic transition amplitudes peh

(k,ze,zh) in Eq. (5.8),
or peh

m in the exciton basis in Eq. (5.12), are labeled with

+ =̂ {e = +3/2, h = +1/2} , − =̂ {e = −3/2, h = −1/2} , (6.2)

respectively. The relevant biexcitonic correlation functions be
′h′

eh
(k2,z2,k1,z1)
(k4,z4,k3,z3)

in Eq. (5.9),

or behe′h′λ
nm (q) in the exciton basis in Eq. (5.13), are labeled according to their source

terms.

6.2. Single Pulse Propagation

The simplest configuration to study nonlinear optical spectra is given by a single light
pulse transmitted through the investigated semiconductor sample. In analogy to the
measurement of transmission spectra in linear optics, the quantity of interest that con-
tains information about the induced material polarization is the transmitted optical
field. Here, in nonlinear optics, the third order material polarization is determined by
the coupled set of equations of motion for the excitonic and the biexcitonic dynamics,
Eqs. (5.8) and (5.9). Making use of the dipole selection rules (1.1) for a single light
pulse, the equations of motion for the excitonic coefficients p±m in the exciton basis are:

i~
d
dt
p+

m =εmp
+
m − deh

∫
dz E+(z)

∑

k

φm(k, z, z)

+ deh

∑

m′n

[ (
p+

m′

)∗
p+

n

∫
dz E+(z)

(
R1

mm′n(z) +R2
mm′n(z)

)]

+
∑

m′nn′

(
p+

m′

)∗
p+

n p
+
n′V

HF
mm′nn′

+
∑

n

(
p+

n

)∗ ∑

qn′m′λ

WXXλ∗
n′m′mn(q, 0)b++λ

n′m′(q)

+
∑

n

(
p−n
)∗ ∑

qn′m′λ

WXXλ∗
n′m′mn(q, 0)b+−λ

n′m′(q) , (6.3)
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i~
d
dt
p−m =εmp

−
m − deh

∫
dz E−(z)

∑

k

φm(k, z, z)

+ deh

∑

m′n

[ (
p−m′

)∗
p−n

∫
dz E−(z)

(
R1

mm′n(z) +R2
mm′n(z)

)]

+
∑

m′nn′

(
p−m′

)∗
p−n p

−
n′V

HF
mm′nn′

+
∑

n

(
p−n
)∗ ∑

qn′m′λ

WXXλ∗
n′m′mn(q, 0)b−−λ

n′m′(q)

+
∑

n

(
p+

n

)∗ ∑

qn′m′λ

WXXλ∗
n′m′mn(q, 0)b−+λ

n′m′(q) . (6.4)

The equations of motion for the biexcitonic coefficients b±±λ
nm (q) contributing to

Eqs. (6.3) and (6.4) are:

i~
d
dt
b++λ
nm (q) =

∑

n′m′q′

HXXλ
nmn′m′(q,q′)b++λ

n′m′(q
′)

+
1

2
(1 + λ)

∑

n′m′rsq′

(1 − λS)−1
nmrs(q,q

′)WXXλ
rsn′m′(q′, 0)p+

n′p
+
m′ , (6.5)

i~
d
dt
b−−λ
nm (q) =

∑

n′m′q′

HXXλ
nmn′m′(q,q′)b−−λ

n′m′(q
′)

+
1

2
(1 + λ)

∑

n′m′rsq′

(1 − λS)−1
nmrs(q,q

′)WXXλ
rsn′m′(q′, 0)p−n′p

−
m′ , (6.6)

i~
d
dt
b+−λ
nm (q) =

∑

n′m′q′

HXXλ
nmn′m′(q,q′)b+−λ

n′m′(q
′)

+
1

2

∑

n′m′rsq′

(1 − λS)−1
nmrs(q,q

′)WXXλ
rsn′m′(q′, 0)p+

n′p
−
m′ , (6.7)

i~
d
dt
b−+λ
nm (q) =

∑

n′m′q′

HXXλ
nmn′m′(q,q′)b−+λ

n′m′(q
′)

+
1

2

∑

n′m′rsq′

(1 − λS)−1
nmrs(q,q

′)WXXλ
rsn′m′(q′, 0)p−n′p

+
m′ . (6.8)

Note, that the Hartree-Fock contributions to the excitonic polarizations p±m (lines 2
and 3 in Eqs. (6.3) and (6.4)) do not couple the spin subsystems ± defined in (6.2). A
coupling of the two interband transitions excited with e+ and e− light only occurs due
to the biexcitonic correlations in Eqs. (6.3) and (6.4).
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E
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one exciton states
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e− e+

e+ e−
e+, e− e+, e−

Figure 6.1: Schematic illustration of the excitation energies and selection rules for optical
excitation of excitons and biexcitons.

For exclusively circular light polarization (e+ or e−), the biexcitonic correlations are
determined either by Eq. (6.5) for e+ polarization or by Eq. (6.6) for e− polarization,
where in both equations the source term vanishes for the electronic singlet configuration
with λ = −1. Therefore, we find that in this case no contributions from biexciton states
with electronic singlet configuration are excited. Hence, especially the bound biexciton
state does not contribute to the semiconductor response for exclusively circular light
polarization. The excitation energies and selection rules for optical excitation of exciton
and biexciton are schematically visualized in Fig. 6.1.

The set of coupled equations (6.3)-(6.8) represents a consistent description of optically
induced excitonic and biexcitonic third order nonlinearities to the macroscopic polar-
ization of the system. However, the self-consistent solution of these equations results
in higher order contributions as well. Without propagation, namely without the self-
consistent coupling of the material polarization and the optical field, the evaluation of
the equations of motion can be performed in a way where the macroscopic polarization
is strictly restricted to third order contributions in the optical field. Within this ap-
proach the excitonic polarizations that enter the nonlinear contributions to Eqs. (6.3)
and (6.4) and the inhomogeneities in Eqs. (6.5)-(6.8) are strictly kept in linear order
in the optical field and thus are determined from the linearized versions (line 1) of
Eqs. (6.3) and (6.4).

Including propagation effects in the description, the exciting light field is influenced by
the nonlinear material polarization and consequently contains nonlinear contributions
itself. Therefore, for light intensities beyond the linear optical regime, a rigorous lin-
earization of Eqs. (6.3) and (6.4) is no longer possible. In principle, a self-consistent
solution of Eqs. (6.3)-(6.8) is necessary which automatically results in contributions to
the macroscopic polarization of the system up to arbitrary order in the optical field.
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Nevertheless, for the theoretical evaluations, the light intensity can be chosen suffi-
ciently small to suppress the influence of higher order contributions and to consistently
concentrate on the analysis of third order nonlinearities in the optical response. Calcu-
lations for higher light intensities can easily be performed but do no longer yield fully
consistent results, since only a subclass of higher order nonlinearities is included in the
theoretical description while others all neglected by the dynamics-controlled truncation
of the many-particle hierarchy problem in Section 5.1.

6.3. Fourier Decomposition of Signals

For the description of typical optical experiments an extension of the theory presented
in the previous section to more than one light pulse is necessary. For instance, two
incoming light fields are chosen, suitable to simulate typical experimental setups in
pump and probe or four wave mixing geometry, respectively. The pulses propagate in
different directions k1 and k2.

A light pulse propagating in the direction of k can be constructed by superposition of
plane wave contributions, all propagating in direction k

|k| but with different modulus |k|
of the wave vector k:

E k

|k|
(r, t) = e

∫

k′

|k′ |
= k

|k|

d3k′E0(k
′)eik′re−ic|k′|t . (6.9)

The spectral shape of the pulse with polarization vector e is determined by the co-
efficients E0(k

′). The dispersion of light, ω = c|k′|, has been used for each plane
wave contribution. For the subject of the present work, the spectral shape of all con-
sidered pulses is localized within a narrow spectral window around a certain central
frequency ω. So, in order to capture the main features and to keep the following dis-
cussion of nonlinear signals as simple and illustrative as possible, the momentum space
contribution to the pulse is approximated by E0(k

′) ≈ E0δ(|k′| − |k|) here. Therefore,
the general expression in Eq. (6.9) for light pulses propagating in a certain direction is
approximated by a simple plane wave contribution with wave vector k.

Material polarizations are induced by the incident light pulses according to their prop-
agation direction. Due to the nonlinearities in the material equations, here Eqs. (5.12)
and (5.13) on page 76, optical excitation with at least two light pulses propagating in
different directions induces excitonic polarizations in directions not being equal to one of
those of the incident pulses. Formally, the nonlinearities in Eq. (5.12) yield contributions
to the excitonic polarization in the directions n1k1+n2k2, with n1, n2 ∈ {0,±1,±2 . . .},
with the restriction n1 +n2 = 1 which directly follows from Eq. (5.12) and the rotating-
wave approximation.19,29 Due to the self-consistent coupling of optical field and mater-
ial polarization, these “diffracted” polarizations themselves are the source for additional
contributions to the optical field. In third order in the optical field, the nonlinearities
in the material equations yield additional contributions to the excitonic polarization in
the directions 2k2 − k1 and 2k1 − k2.
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The dipole coupling of excitonic polarization and the optical field gives rise to contri-
butions to the optical field in these directions as well. In order to deduce a consistent
theory in third order, a weak pulse in k1-direction is applied which only yields a sig-
nificant contribution to the excitonic polarization in linear order in its electric field
amplitude. So, due to the weak k1 pulse, only the prominent four wave mixing signal
in 2k2 − k1 direction is observed.75,76

However, the idealized directions n1k1+n2k2 of diffracted signals can, strictly speaking,
only be deduced for plane wave signals. Thinking in terms of wave packets given
by Eq. (6.9), contributions to nonlinear signals are just localized in the vicinity of
the diffraction maxima observed in the directions n1k1 + n2k2. Nevertheless, in the
following all contributions are contracted to these idealized directions in a very good
approximation. This approach has successfully been applied to different excitation
configurations in the past20,75 and yields meaningful results as long as the slowly varying
envelope approximation19 (SVEA) is applicable to the investigated system.

Only a small deviation from perpendicular incidence to the semiconductor layer is
considered here. The induced material polarization and the optical field in different
directions are still described by the equations of motion for light propagation in the z-
direction, deduced in the previous part of this work, together with the dipole selection
rules (1.1). Maxwell’s equations are solved in their one-dimensional form (3.4a), (3.4b),
with Ek/|k|(r, t) ≈ Ek/|k|(z, t) for kz � kx, ky and |k| ≈ |kz|. The index k is only
formally kept to distinguish the signals which are propagating in different directions. A
change of the semiconductor response due to the small momentum of the optical fields
in the x-y-plane is not considered. All relevant dynamic quantities are decomposed
according to the directions n1k1 + n2k2. This decomposition yields coupled equations
of motion for the Fourier components

pehn1n2
m (t) , behe′h′λn1n2

nm (t) (6.10)

of the excitonic polarization and the biexcitonic correlation function, respectively, in
the directions n1k1 + n2k2.

In Sections 6.4 and 6.5 the relevant equations of motion to determine the excitonic
transition amplitudes pehn1n2

m and the biexcitonic correlation functions behe′h′λn1n2
nm are

explicitly given to simulate experiments in pump and probe and in four wave mixing
geometry.

6.4. Pump and Probe

A typical pump and probe setup is illustrated in Fig. 6.2. The two incident light
pulses propagate in the directions k1 and k2, respectively, and are superimposed on the
sample. The intensity of the probe pulse in k1 direction is weak enough that it alone
would yield a linear transmission spectrum. The pump pulse in k2 direction gives rise to
third order contributions to the material polarization in probe direction. A time-delay
between pump and probe pulse may be applied. Behind the sample, the transmitted
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probe pulse

pump pulse

k2

k1

detectorsample

Figure 6.2: Schematic illustration of a typical pump and probe setup.

signal in probe direction is detected. This probe transmission contains information
about the linear material response as well as about the third order material response.
Since in pump and probe configuration the probe pulse enters the polarization only in
linear order, information exclusively about the third order response can be obtained
from the transmission change induced by the pump pulse. Commonly, the analysis
of pump and probe experiments is done for two different polarization configurations:
(i) pump and probe pulse are in the same circular polarization state, the co-circular
configuration, and (ii) pump and probe pulse are in opposite circular polarization states,
the opposite circular configuration. Making use of the dipole selection rules and the
Fourier decomposition of signals described in the previous section, the relevant equations
of motion for the co-circular e+e+ configuration read:

(i) Linear polarization in pump direction:

i~
d
dt
p01+

m = εmp
01+
m − deh

∫
dz E01

+ (z)
∑

k

φm(k, z, z) . (6.11)

(ii) Third order polarization in probe direction:

i~
d
dt
p10+

m =εmp
10+
m − deh

∫
dz E10

+ (z)
∑

k

φm(k, z, z)

+ deh

∑

m′n

[ (
p01+

m′

)∗
p01+

n

∫
dz E10

+ (z)
(
R1

mm′n(z) +R2
mm′n(z)

)

+
(
p01+

m′

)∗
p10+

n

∫
dz E01

+ (z)
(
R1

mm′n(z) +R2
mm′n(z)

)]

+
∑

m′nn′

(
p01+

m′

)∗ [
p01+

n p10+
n′ + p10+

n p01+
n′

]
V HF

mm′nn′

+
∑

n

(
p01+

n

)∗ ∑

qn′m′λ

WXXλ∗
n′m′mn(q, 0)b11++λ

n′m′ (q) . (6.12)
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(iii) Relevant biexcitonic correlation function:

i~
d
dt
b11++λ
nm (q) =

∑

n′m′q′

HXXλ
nmn′m′(q,q′)b11++λ

n′m′ (q′)

+ (1 + λ)
∑

n′m′rsq′

(1 − λS)−1
nmrs(q,q

′)WXXλ
rsn′m′(q′, 0)

(
p01+

n′ p10+
m′ + p10+

n′ p01+
m′

)
.

(6.13)

The equations of motion are given here for small light intensities where only third
order nonlinearities yield a relevant contribution to the material polarization in probe
direction. The polarization in probe direction is linear in the weak probe field and of
second order in the pump field. Within the χ(3)-limit the pump polarization can be
determined from the linear equation (6.11).

The corresponding equations of motion for opposite circular e+e− configuration are:

(i) Linear polarization in pump direction:

i~
d
dt
p01−

m = εmp
01−
m − deh

∫
dz E01

− (z)
∑

k

φm(k, z, z) .

(ii) Third order polarization in probe direction:

i~
d
dt
p10+

m =εmp
10+
m − deh

∫
dz E10

+ (z)
∑

k

φm(k, z, z)

+
∑

n

(
p01−

n

)∗ ∑

qn′m′λ

WXXλ∗
n′m′mn(q, 0)b11+−λ

n′m′ (q) . (6.14)

(iii) Relevant biexcitonic correlation function:

i~
d
dt
b11+−λ
nm (q) =

∑

n′m′q′

HXXλ
nmn′m′(q,q′)b11+−λ

n′m′ (q′)

+
1

2

∑

n′m′rsq′

(1 − λS)−1
nmrs(q,q

′)WXXλ
rsn′m′(q′, 0)p10+

n′ p01−
m′ .

Note, that in e+e− configuration no mean-field (Hartree-Fock, via the matrix elements
V HF, R1(z), R2(z)) contributions to the third order probe polarization (6.14) are ob-
tained. Similar to linear optics, on the Hartree-Fock level, the two spin-subsystems are
decoupled as already seen in Section 6.2. Results obtained from an evaluation of these
equations of motion for the probe pulse transmission through a semiconductor material
are presented in Chapter 7.
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probe pulse

pump pulse
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k2

2k2 − k1

2k1 − k2

detector
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Figure 6.3: Schematic illustration of a typical four wave mixing setup.

6.5. Four Wave Mixing

In four wave mixing geometry a similar setup to that in the previous section is used.
However, here, the quantity to measure is the diffracted signal in the four wave mixing
direction 2k2 − k1. A signal in this direction is at least of third order in the optical
field. In contrast to the pump and probe setup the detected signal is not superimposed
by a contribution in linear order in the optical field. Therefore, this configuration is
particularly sensible to optical nonlinearities, to third order nonlinearities for a suffi-
ciently weak optical pulse in k2 direction. In analogy to the pump and probe setup, the
pulse in k1 direction is weak enough to guarantee a consistent description in third order
in the optical field. The setup is schematically illustrated in Fig. 6.3. A general for-
mulation is presented here regarding the polarization states of the two incident pulses.
In particular, by use of the relations given in Section 6.1 linear pulse polarization is
investigated while the angle that is enclosed by the polarization vectors of both pulses
can easily be varied. The relevant equations of motion to calculate the third order four
wave mixing signal in 2k2 − k1 direction are:

(i) Excitonic polarizations in linear order in the optical field in k1 direction:

i~
d
dt
p10+

m = εmp
10+
m − deh

∫
dz E10

+ (z)
∑

k

φm(k, z, z) , (6.15)

i~
d
dt
p10−

m = εmp
10−
m − deh

∫
dz E10

− (z)
∑

k

φm(k, z, z) . (6.16)

(ii) Excitonic polarizations in linear order in the optical field in k2 direction:

i~
d
dt
p01+

m = εmp
01+
m − deh

∫
dz E01

+ (z)
∑

k

φm(k, z, z) , (6.17)

i~
d
dt
p01−

m = εmp
01−
m − deh

∫
dz E01

− (z)
∑

k

φm(k, z, z) . (6.18)
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(iii) Nonlinear excitonic polarizations in 2k2 − k1 direction:

i~
d
dt
p−12+

m =εmp
−12+
m + deh

∫
dz E−12

+ (z)
∑

k

φm(k, z, z)

+ deh

∑

m′n

[(
p10+

m′

)∗
p01+

n

∫
dz E01

+ (z)(R1
mm′n(z) +R2

mm′n(z))

]

+
∑

m′nn′

(
p10+

m′

)∗
p01+

n p01+
n′ V HF

mm′nn′

+
∑

n

[ (
p10+

n

)∗ ∑

qn′m′λ

WXXλ∗
n′m′mn(q, 0)b02++λ

n′m′ (q)

+
(
p10−

n

)∗ ∑

qn′m′λ

WXXλ∗
n′m′mn(q, 0)b02+−λ

n′m′ (q)

]
, (6.19)

i~
d
dt
p−12−

m =εmp
−12−
m + deh

∫
dz E−12

− (z)
∑

k

φm(k, z, z)

+ deh

∑

m′n

[(
p10−

m′

)∗
p01−

n

∫
dz E01

− (z)(R1
mm′n(z) +R2

mm′n(z))

]

+
∑

m′nn′

(
p10−

m′

)∗
p01−

n p01−
n′ V HF

mm′nn′

+
∑

n

[ (
p10+

n

)∗ ∑

qn′m′λ

WXXλ∗
n′m′mn(q, 0)b02−+λ

n′m′ (q)

+
(
p10−

n

)∗ ∑

qn′m′λ

WXXλ∗
n′m′mn(q, 0)b02−−λ

n′m′ (q)

]
. (6.20)

(iv) Biexcitonic correlation functions that contribute to the nonlinear excitonic polar-
ization in 2k2 − k1 direction in Eqs. (6.19) and (6.20):

i~
d
dt
b02++λ
nm (q) =

∑

n′m′q′

HXX
nmn′m′(q,q′)b02++λ

n′m′ (q′)

+
1

2
(1 + λ)

∑

n′m′rsq′

(1 − λS)−1
nmrs(q,q

′)WXXλ
rsn′m′(q′, 0)p01+

n′ p01+
m′ ,

(6.21)

i~
d
dt
b02−−λ
nm (q) =

∑

n′m′q′

HXX
nmn′m′(q,q′)b02−−λ

n′m′ (q′)

+
1

2
(1 + λ)

∑

n′m′rsq′

(1 − λS)−1
nmrs(q,q

′)WXXλ
rsn′m′(q′, 0)p01−

n′ p01−
m′ ,

(6.22)
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i~
d
dt
b02+−λ
nm (q) =

∑

n′m′q′

HXX
nmn′m′(q,q′)b02+−λ

n′m′ (q′)

+
1

2

∑

n′m′rsq′

(1 − λS)−1
nmrs(q,q

′)WXXλ
rsn′m′(q′, 0)p01+

n′ p01−
m′ , (6.23)

i~
d
d
b02−+λ
nm (q) =

∑

n′m′q′

HXX
nmn′m′(q,q′)b02−+λ

n′m′ (q′)

+
1

2

∑

n′m′rsq′

(1 − λS)−1
nmrs(q,q

′)WXXλ
rsn′m′(q′, 0)p01−

n′ p01+
m′ . (6.24)

Again, higher order contributions that would result from a self-consistent solution of
the equations of motion are not considered. Therefore, the linear excitonic polarizations
(6.15)-(6.18) in k1 and k2 direction form the driving terms for the nonlinear excitonic
polarizations (6.19) and (6.20) in 2k2 −k1 direction as well as for the biexcitonic corre-
lations (6.21)-(6.24) in 2k2 direction. A self-consistent extension of these equations of
motion for light intensities beyond the χ(3)-limit is investigated in Ref. 76.
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7. Results: Nonlinear Optics

In the previous chapter the equations of motion for the theoretical description of non-
linear optical transmission spectra in different configurations have been given. Making
use of the results discussed in Sections 5.2 and 5.3, in this section the method is applied
to the calculation of nonlinear optical spectra for semiconductor heterostructures. The
evaluation is done for layer thicknesses beyond the quasi two-dimensional quantum-well
limit where propagation effects strongly influence the optical spectra. In the following
section some basic results are discussed for a GaAs model system, whereas in Section 7.2
a direct theory-experiment comparison of transmission spectra is presented for a 20 nm
ZnSe layer.

7.1. GaAs Model System

The model system that is investigated in this section consists of a single GaAs layer
with a thickness of 5 aX

0 . The biexciton binding energy EXX
b and the matrix elements

in the two-exciton product basis have already been discussed for this system in Sec-
tion 5.3. Material parameters are given in Table 3.1 on page 30. The dephasing constant
is slightly increased to γ = 0.6 meV in this section. This dephasing constant yields a
somewhat faster decay of the material polarization in the time domain and an un-
significantly larger broadening of excitonic and biexcitonic resonances in the optical
spectra. For practical purposes, this increased dephasing constant was initially used
here to broaden the numerically discrete resonances that represent the exciton-exciton
scattering continuum in the calculations. However, this parameter does not sensitively
affect the final results and their discussion.

7.1.1. Single Pulse Propagation

The solid and dashed lines in Fig. 7.1 (a) show the linear optical transmission Tlinear

through the GaAs layer and the spectral shape of the 120 fs laser pulse, respectively.
The excitation energy ~ω is given relative to the bulk band-gap energy Egap and in
units of the corresponding bulk exciton binding energy EX

b .

For the chosen layer thickness, the confinement of carriers in the z-direction yields three
polariton resonances in the displayed part of the spectrum. According to Section 5.2.1,
they can be attributed to a splitting of the 1s exciton state and are labeled with con-
secutive numbers. The spectral position of biexciton states entering the calculations
are depicted in Fig. 7.1 (b) for electronic singlet (×) and triplet (+) configuration.
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Figure 7.1: (a) Calculated linear transmission spectrum for a 5 aX
0 GaAs layer (solid line),

and spectral shape of the 120 fs laser pulse (dashed line). The polariton resonances are labeled
according to the in-plane 1s symmetry of the involved exciton states and with consecutive
numbers. (b) Spectral positions of biexciton states for electronic singlet (×) and triplet (+)
configuration.

These energies for the biexciton states follow from the diagonalization of the biexcitonic
Hamiltonian matrices (5.19) for the electronic singlet (λ = −1) and triplet (λ = +1)
subspaces. The discrete structure of the biexcitonic spectrum on the higher energy
side of the 1s,1 polariton resonance, the exciton-exciton scattering continuum, is a con-
sequence of the numerical discretization of the two-exciton relative momentum q and
of the confinement of electrons and holes in the slab geometry. The bound biexciton
state on the lower energy side of the 1s,1 polariton resonance is found in the electronic
singlet subspace in analogy to the Hydrogen-molecule problem as already discussed in
Section 5.3.

The calculation of nonlinear transmission spectra is performed according to the equa-
tions of motion (6.3)-(6.8) for the material polarization given in Section 6.2. Sufficiently
weak optical fields are applied here to give a consistent description of third order op-
tical nonlinearities. A Rabi energy of deh|E| = 0.01 EX

b (3D)a) is chosen for the 120 fs
laser pulse. For this light intensity, the nonlinear contributions to the transmitted sig-
nal are less than 1% of the linear transmission in Fig. 7.1 (a). Thus, appropriate for
the visualization and discussion of the optical nonlinearities, the transmission change

a)In order to connect the Rabi energy dehE directly to the light intensity |E|2 of the incoming laser
pulses within our two-band model, the quantity deh|E| = |deh||E| is called Rabi energy in the following.
According to Section 6.1, in the case of linear light polarization, the intensity of the incoming light
field is equally distributed to the two circularly polarized components and therefore to the different
dipole-allowed interband transitions.

102



7.1. GaAs Model System

0.1

0.2

0.3

0.4

0.5

-1.0 -0.8 -0.6 -0.4 -0.2
-0.2

-0.1

0.0

0.1

1s,1

1s,2 1s,3

(a)

(b)

bound XX

1
−
T

( T
li
n
ea

r
−
T

n
o
n
li
n
ea

r)
·1

02

Energy
(
~ω − Egap

)
/EX

b

Figure 7.2: (a) The dotted line shows the linear transmission spectrum for a 5 aX
0 GaAs

layer (same as solid line in Fig. 7.1 (a)). Nonlinear transmission spectra for linear (solid line)
and circular (dashed line) light polarization are included for a Rabi energy deh|E| = 0.07EX

b .
(b) Differential single pulse transmission spectra for linear (solid line) and circular (dashed
line) light polarization, corresponding to (a) but for a Rabi energy deh|E| = 0.01EX

b . For
explanations see text.

Tlinear − Tnonlinear due to optically induced nonlinearities is displayed in Fig. 7.2 (b) for
a single light pulse. The result is shown for linear (solid line) and circular (dashed line)
light polarization, respectively.

For illustration purposes, the solid and the dashed lines in Fig. 7.2 (a) show the
corresponding transmission spectra to Fig. 7.2 (b) for an increased Rabi energy of
deh|E| = 0.07 EX

b (3D). For this elevated excitation intensity also higher order nonlinear-
ities beyond the χ(3)-limit contribute to the nonlinear transmitted signals in Fig. 7.2 (a),
see Section 6.2. Note, that the description does not yield fully consistent results in
this case because other higher order nonlinearities like for example six-particle correla-
tions have been neglected in the DCT factorization of expectation values in Chapter 5.
Therefore, the following discussion of theoretical results will be done for a Rabi energy
deh|E| = 0.01 EX

b (3D) and in terms of transmission changes (differential transmission
spectra) to ensure that the results consistently remain in the χ(3)-limit.

The observed bleaching of polariton resonances in Fig. 7.2 results from Hartree-Fock
as well as biexcitonic contributions to the third order optical response. As already
discussed in Section 5.1 Pauli-blocking and the mean-field contributions to the exciton-
exciton Coulomb interaction contribute on the effective two-particle (Hartree-Fock)
level.
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7. Results: Nonlinear Optics

Biexcitonic (four-particle) correlations, which are included in the theory presented here,
yield additional important contributions. The exciton-exciton Coulomb interaction in-
volves exciton states with non-vanishing in-plane COM momentum in the semiconduc-
tor nonlinear optical response. The resulting broad background on the higher energy
side of the 1s,1 resonance is due to excitation of this exciton-exciton scattering con-
tinuum. A transmission change energetically below the 1s,1 polariton resonance at the
spectral position of the bound biexciton (bound XX) state is found for linear light
polarization only. According to Section 6.1, linearly polarized light contains both cir-
cularly polarized components which allows the excitation of the bound biexciton state
according to its electronic singlet symmetry as illustrated in Fig. 6.1 on page 92.

7.1.2. Pump and Probe

For the pump and probe configuration as described in Section 6.4 we have two incoming
light pulses propagating perpendicular to the slab. However, the two propagation di-
rections are slightly different, so that the pulses can be distinguished by their direction.
The selection rules for both pulses are assumed to be those for normal incidence, as
previously discussed in Section 6.3.

In the pump and probe configuration, the quantity of measurement is the optical trans-
mission Tprobe of the weak probe pulse. The transmission of the probe pulse depends
on the nonlinearities to the material polarization that are induced by the pump pulse.
The evaluation is done according to the equations of motion that have been discussed
in Section 6.4. The material polarization in probe direction, Eq. (6.12) or (6.14), is
linear in the probe field and of second order in the pump field for a sufficiently weak
pump pulse. For the pump pulse, a Rabi energy deh|Epump| = 0.01 EX

b (3D) is used which
ensures a consistent description in terms of the formulated χ(3)-theory. Therefore, the
pump pulse induced changes in the probe pulse transmission (differential probe trans-
mission) contain exclusive information about the third order optical response of the
system. For the excitation, 120 fs pump and probe pulses are applied which reach the
sample without time-delay.

Figure 7.3 shows calculated transmission changes for the probe pulse. The results for
opposite circular e+e− and co-circular e+e+ polarization of pump and probe pulse are
shown as solid and dashed-dotted lines in Fig. 7.3 (a), respectively. The transmission
changes around the higher polariton resonances are similar to those around the lowest
one but with a decreased amplitude. In the e+e− configuration the excitation of the
bound biexciton resonance yields a line shape for the probe transmission changes which
corresponds to a red-shift of the 1s,1 polariton resonance. For the e+e+ configuration
a clear blue-shift is observed for the 1s,1 polariton resonance. A similar dependence
on the light polarization has been reported for the differential probe absorption around
the 1s exciton resonance in a quantum-well system in Ref. 20.

Coulomb interaction of polaritons in states with different spatial distribution in the
z-direction plays an important role for the observed probe transmission changes in
Fig. 7.3. In the following, the e+e− configuration is chosen for its analysis since it allows
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Figure 7.3: (a) Differential probe transmission for opposite circular e+e− configuration (solid
line) and co-circular e+e+ configuration (dashed-dotted line). (b) Differential probe transmis-
sion for e+e− configuration including all Coulomb terms (solid line, same as solid line in (a)
and (c)), and diagonal Coulomb interaction with respect to the internal exciton quantum num-
bers in the two-exciton product basis (dashed line). (c) No Coulomb interaction of different
excitons (dashed line).

the exclusive investigation of biexcitonic correlations: For the e+e− configuration the
changes in the probe transmission are determined by biexcitonic correlations only; no
mean-field effects contribute according to the equation of motion (6.14) in Section 6.4.
In this configuration, the two dipole-allowed interband transitions (6.2) are exclusively
excited by the opposite circularly polarized pump and probe pulses. On the Hartree-
Fock level, both subsystems +,− would be decoupled which would result in vanishing
pump-induced transmission changes for the probe pulse.

The solid line in Fig. 7.3 (b) shows the transmission changes with full Coulomb inter-
action taken into account. The dashed line represents the result where only Coulomb
interaction has been taken into account that is diagonal with respect to the internal
exciton quantum numbers n, m of the two excitons contributing to the two-exciton prod-
uct states in Eq. (5.11). Off-diagonal elements in the two-exciton Coulomb interaction
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7. Results: Nonlinear Optics

(5.15) and (5.16) have been neglected in the calculation, compare the discussions in Sec-
tion 5.3. Only slight changes in the probe transmission are observed compared to the
result with full Coulomb interaction (solid line). But note that despite the considerably
large spectral separation of the exciton states for a layer thickness of 5 aX

0 , here, the
biexciton binding energy is decreased by about 10 % neglecting off-diagonal Coulomb
matrix elements in the two-exciton product basis as already discussed in Section 5.3.2.

The dashed line in Fig. 7.3 (c) shows the result where all Coulomb terms coupling exci-
tons in different states n, m have artificially been turned off. According to the notation
introduced in Section 5.3.1, inter-site and off-diagonal Coulomb matrix elements have
been neglected in this calculation. We encounter only a slight quantitative change of the
probe transmission around the lowest polariton resonance (1s,1) whereas for the higher
resonances (1s,2 and 1s,3) the influence of the pump pulse almost vanishes. Therefore,
Coulomb interaction between different exciton states is the main source for transmission
changes around higher polariton resonances. Thinking in terms of two-exciton product
states, due to the comparatively large oscillator strength of the exciton ground state
(1s,1), the contributions from biexciton states which involve the exciton ground state
are dominant in the nonlinear optical spectra. Contributions from biexciton states ex-
clusively involving the excited exciton states (1s,2 and 1s,3) are much less pronounced.
With increasing layer thickness higher polariton resonances become more important
due to their decreasing energy level separation.

7.1.3. Four Wave Mixing

The evaluation of four wave mixing singals in this section are based on the equations
of motion for the third order material polarization given in Section 6.5. The diffracted
four wave mixing signal is observed in the 2k2−k1 direction and is exclusively sensitive
to third order nonlinearities in the optically induced material polarization. It is not
superimposed by a linear background transmission of one of the incoming pulses.

Results are presented for the GaAs model system with a layer thickness of 5 aX
0 as

in the previous sections. To give a comparison to a quasi two-dimensional quantum-
well system, results are also shown for a layer thickness of 1 aX

0 . Four wave mixing
signals are analyzed as a function of the delay time tdel between the two incoming light
pulses for different polarization states of these pulses. The detection is not sensitive to
the polarization state of the diffracted signal in 2k2 − k1 direction. Again 120 fs laser
pulses are applied with the same spectral shape as displayed in Fig. 7.1 (a). For the 5 aX

0

system, both pulses are centered at an excitation energy of −0.6 in excitonic units. The
energy scale for the quantum-well with 1 aX

0 thickness is shifted to higher values due to
the confinement of the carrier motion perpendicular to the quantum-well. Therefore,
for this system, the pulses are centered on the spectral position of the exciton resonance
at 7.71 in excitonic units.

Results are displayed in Fig. 7.4 for co-circular e+e+ polarization of the two incident
light pulses, in Fig. 7.5 for co-linear exex polarization, and in Fig. 7.6 for cross-linear
exey polarization. The contour plots show the spectrally resolved four wave mixing
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Figure 7.4: Left: Contour plot of the spectrally resolved four wave mixing intensity in co-
circular e+e+ configuration as a function of the delay time tdelay between the two incoming
light pulses for a GaAs layer with thickness of 5 aX

0 . The color coding represents the four wave
mixing intensity in arbitrary units on a logarithmic scale according to the color bar. The
energy scale on the vertical axis is chosen in excitonic units according to the horizontal axis
in Fig. 7.1. Right: Same as figure on the left but for a layer thickness of 1 aX

0 .

intensity as a function of the delay time tdel. The color coding represents the magnitude
of the four wave mixing intensity on a logarithmic scale. On the left of each figure, the
results for 5 aX

0 layer thickness are depicted and on the right the corresponding results
for the quantum-well system with 1 aX

0 layer thickness.

For the 5 aX
0 sample, for all the three configurations a four wave mixing signal is detected

at the spectral position of the three polariton resonances which are already present in
the linear transmission spectrum in Fig. 7.1 (a). Qualitatively, around the spectral
position of the lowest polariton resonance a similar polarization dependence of the four
wave mixing signal is observed that is found for the 1 aX

0 quantum-well system: (i) For
the e+e+ configuration in Fig. 7.4 no resonant contribution to the signal is detected
at the spectral position of the bound biexciton state, according to its electronic singlet
configuration as already discussed in the previous sections. A fast decay of the signal
for negative delay times tdel < 0 is found. (ii) For the exex configuration in Fig. 7.5 the
signal is dominated by contributions at the spectral positions of the polariton resonances
while the signal at the spectral position of the bound biexciton resonance is weak in
this configuration. (iii) For the exey configuration in Fig. 7.6 a resonant contribution
to the four wave mixing signal is visible at the spectral position of the bound biexciton
resonance spectrally below the lowest polariton resonance. This feature is much more
pronounced for the 1 aX

0 system because of the larger biexciton binding energy and the
smaller spectral window which is displayed in the figures. But, comparing Figs. 7.5 and
7.6, also for the 5 aX

0 system a qualitative difference in the four wave mixing signals
spectrally below the lowest polariton resonance is clearly visible. It can be attributed
to the excitation of the bound biexciton resonance. A similar polarization dependence
of four wave mixing signals has experimentally and theoretically been observed for a
ZnSe quantum-well system in Refs. 76, 77.
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Figure 7.5: Same as Fig. 7.4 but for co-linear exex polarization of the two incoming light
pulses.
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Figure 7.6: Same as Fig. 7.4 but for cross-linear exey polarization of the two incoming light
pulses.

Going more into detail, distinct differences in the four wave mixing spectra of both
systems are observed. For the system with 5 aX

0 layer thickness we find that the detected
signal at the spectral position of each polariton resonance is strongly influenced by
the excitation of the other resonances. In the displayed spectral range the signal is
periodically modulated in the delay time tdelay. These oscillations are absent for the
quantum-well system since only a single excitonic resonance contributes to the four
wave mixing signal. The periods of the oscillations for 5 aX

0 are determined by the
energy separation of the different polariton resonances. Two main contributions to these
oscillations are observed. The periods can be attributed to the energy difference between
first and third polariton resonance and to the energy difference between the first and
the second or the second and the third resonance, respectively. For higher excitation
intensities oscillations have been observed for a quantum-well with a period in the
delay time tdelay that could be attributed to the energy difference between the spectral
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position of the exciton resonance and the spectral position of the bound biexciton
resonance.29,76 Qualitative differences are observed for the four wave mixing signals
around the spectral positions of the different polariton resonances for the 5 aX

0 sample
in Figs. 7.4 to 7.6. In particular, the signals in the vicinity of the second and the
third resonance are superimposed by contributions that arise from the excitation of
exciton-exciton scattering states involving the exciton ground state as well.

Compared to a quantum-well system, the resulting four wave mixing spectra for 5 aX
0 ex-

hibit a more complicated structure due to the excitation of several polariton resonances
in the investigated spectral range. However, the qualitative polarization dependence of
the four wave mixing signal in the vicinity of the lowest polariton resonance is similar
to that of the quantum-well system. Nevertheless, an interpretation in terms of isolated
polariton resonances is not valid beyond the quantum-well limit since a strong interac-
tion of the contributions from different polaritonic resonances over the whole spectral
range is observed.

7.2. Theory vs. Experiment

The theory presented in the preceding part of this work provides for the first time a
rigorous microscopic description of biexcitonic nonlinearities and propagation effects
in semiconductor heterostructures with a finite spatial extension. To conclude the
discussions, a direct theory-experiment comparison of nonlinear polariton spectra has
been initiated. Especially the ZnSe/ZnSSe heterostructure with a ZnSe layer thickness
of 20 nm, already investigated in Section 4.2 in the linear optical regime, is well-suited
for the application of the presented theory for nonlinear polariton propagation. Being
the conceptually simplest configuration for the measurement of nonlinear spectra, the
transmission through the sample is investigated for a single laser pulse with variable
light intensity.

The experiments are performed using a frequency-doubled titanium-sapphire laser sys-
tem. The 110 fs laser pulses are generated with a repetition rate of 82 MHz. Pockels-cells
are used for the calibration of the polarization state of the laser pulses. The spectrom-
eter and CCD device allow the detection of the signal over a wave length range of
about 11 nm with a spectral resolution of ∆λ . 0.04 nm. The samples are prepared
and handled as already described in Section 4.2.1. The optical experiments have been
performed by Iryna Kudyk in the Semiconductor Optics Group of the Institute for Solid
State Physics at the University of Bremen.

The measured transmission spectra are shown in Fig. 7.7 (a) for a pulse energy of 1.2 pJ
(dashed-dotted line) and for 12.2 pJ for circular (dashed line) and linear (solid line) light
polarization. A slight constant offset of about 0.1 in the nonlinear transmission spectra
is observed. The reason for its occurrence is not completely clear by now, but it might
be caused by slight fluctuations in the laser pulse intensity during the measurement.
However, the structure of the transmission changes which are depicted in Fig. 7.7 (b) is
not influenced by it. Therefore it does not affect the following discussion of the results
at all. The spectral shape of the laser pulse is included as a dotted line.
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Figure 7.7: (a) Experimental linear (pulse energy 1.2 pJ) transmission spectrum for the 20 nm
ZnSe sample (dashed-dotted line) and spectral shape of the 110 fs laser pulse (dotted line).
Solid and dashed line show the nonlinear transmission spectra for a pulse energy of 12.2 pJ for
linear (solid) and circular (dashed) light polarization. (b) Experimental transmission change
∆T = Tlinear − Tnonlinear for the pulse intensity in the nonlinear regime corresponding to the
data in (a). The solid line shows the result for linear and the dashed line for circular light
polarization. (c), (d) Theoretical results corresponding to (a) and (b), respectively.

According to the data in Fig. 7.7 (a) the transmission changes for nonlinear pulse in-
tensities are displayed in Fig. 7.7 (b) for linear (solid line) and circular (dashed line)
light polarization. Three polariton resonances are observed in the linear transmission
spectrum (dashed-dotted line). In analogy to the theoretical results presented in Sec-
tion 7.1.1 a bound biexciton (bound XX) resonance is only observed in the nonlinear
transmission for linear light polarization (solid line). The nonlinearities at the spectral
position of the hh1 polariton resonance and above are more pronounced for circular
light polarization.

The theoretical results corresponding to the experimental ones are displayed in Figs. 7.7
(c), (d). Material parameters for the calculation are taken from Section 4.2. The light
intensity is chosen according to the observed nonlinearities in the experimental spectra.
For the resulting rather high pulse intensities a self-consistent evaluation of the material
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equations given in Section 6.2 up to arbitrary order in the optical fields is required here
as discussed at the end of Section 6.2. Consequently, the theoretical description can
not be performed in the χ(3)-limit here, since a subclass of higher order nonlinearities is
automatically included in the calculations. However, this way, optical spectra can also
be described for higher excitation intensities in terms of the present theory.

The nonlinear transmission spectra exhibit all the features that have already been pre-
dicted by the evaluation of the theory in Section 7.1.1. A bleaching of the polariton res-
onances is observed, and a broad background on their higher energy side, as well as the
bound biexciton resonance (bound XX) spectrally below the hh1 polariton resonance.
The experimental results are in very good agreement with our theoretical predictions.
Especially the polarization dependence of the nonlinear transmitted signals is repro-
duced by the measurements. The biexciton binding energy is slightly underestimated
by the evaluation in the exciton basis as already discussed in Section 5.3.2. Neverthe-
less, the great advantage of the approach applied here is the simultaneous inclusion
of the bound biexciton state and of the exciton-exciton scattering continuum in the
theoretical description. The latter one is essential to reproduce the broad background
on the higher energy side of the polaritonic resonances in the nonlinear transmission
spectra.

In this section, the microscopic theory for nonlinear polariton propagation has suc-
cessfully been applied to a realistic ZnSe/ZnSSe heterostructure. The applicability to
realistic heterostructures has been achieved by a formulation of the excitonic and biexci-
tonic problem with respect to the exciton eigenbasis. The physical boundary conditions
of the system that strongly influence the optical spectra are fully included in the the-
oretical description. For transmission spectra of a single laser pulse with linear and
circular light polarization excellent agreement of theoretical and experimental results
has been demonstrated.
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Conclusions and Outlook

The dynamics of coherent excitations in semiconductors induced by optical fields
was investigated in a regime where propagation effects play an important role. The
presence of surfaces or interfaces in realistic heterostructures results in a non-local
response function for the optical excitations. This non-locality massively complicates
the solution of the coupled light-matter problem. In particular, in the linear optical
regime it prevents an analytical solution of the well-known polariton problem. To
circumvent its complicated solution, different approximation schemes have been
developed in the past, which do not take into account the microscopic structure of
the situation. However, in this work, a fully microscopic description of polaritons was
formulated and analyzed in detail. Within this framework, the often used macroscopic
approach to the polariton problem based on Pekar’s ABCs was investigated and its
shortcomings were discussed. Experiments have been initiated and performed during
the preparation of this work which allowed a direct theory-experiment comparison of
transmission spectra that are strongly influenced by polaritonic effects. The first part
of this work was dedicated to the linear optical regime whereas the second part focused
on nonlinear optical excitations.

In the first part of this work, a formulation of the non-local optical response function
in terms of exciton eigenstates was presented. This approach makes a microscopic
description of the polariton problem much more feasible for the application to realistic
semiconductor heterostructures. In contrast to previous approaches in the literature,
the exciton eigenfunctions were directly determined according to the confinement
geometry and individually fulfill the physical boundary conditions of the investigated
systems. In the linear optical regime, this formulation allows the individual excitation
of polariton resonances as long as they are spectrally well-separated from other
resonances in the optical spectra. A series of high quality ZnSe/ZnSSe heterostructures
with different thicknesses of the ZnSe layer has been grown for the analysis of
experimental transmission spectra. These samples made a detailed theory-experiment
comparison possible. The ZnSe/ZnSSe heterostructures served as a typical example
to study polariton propagation in heterostructures which provide shallow confinement
potentials for the motion of electrons and holes. Excellent agreement with experimental
results was achieved by the inclusion of finite-height potential barriers for the carrier
motion as well as Fabry-Perot effects for the optical field in the theoretical description.
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In the shallow-confinement situation the absence of polarization-free dead-layers at
the ZnSe/ZnSSe interfaces was found. Furthermore, our investigations demonstrated
why macroscopic models based on Pekar’s ABCs seemed to work for the description
of polaritons in ZnSe/ZnSSe heterostructures in the past. The discussions can also be
extended to other semiconductor material systems. The importance of a microscopic
description of the polariton problem has clearly been demonstrated.

In the second part of this work, an extension of the microscopic theory for polariton
propagation to the description of nonlinear optical properties was presented. The
inherent many-particle hierarchy in the dynamics of the optically excited electronic
system was truncated in terms of the dynamics-controlled truncation formalism. A
theory has been derived that incorporates both, propagation effects as well as optically
induced excitonic and biexcitonic nonlinearities in the semiconductor material. The
formulation is suitable for the description of optical experiments on ultra short time
scales and allows to analyze the dynamics of coherent many-particle effects coupled to
the propagating light fields on a microscopic level. The evaluation of the presented
χ(3)-theory including the excitonic and the biexcitonic problem in the confinement
geometry is a numerical challenge. An efficient formulation was achieved by the
transition to the exciton eigenbasis. The exciton eigenstates contain the physical
boundary conditions for excitons and biexcitons in the investigated heterostructures.
The numerical calculations within the exciton basis remain very time-consuming
but an evaluation of the theory was achieved by efficient parallelization on modern
supercomputer systems. The theory was applied to the calculation of nonlinear
transmission spectra which were analyzed for single light pulses as well as in pump
and probe and in four wave mixing geometry. Pronounced biexcitonic signatures were
found in the optical transmission spectra. This clearly demonstrates the importance
of higher order Coulomb correlations in the theoretical description. Depending on the
polarization state of the exciting light fields the bound biexciton resonance as well
as the exciton-exciton scattering states strongly contribute to the nonlinear optical
response of the system. In contrast to the findings in linear optics, exciton-exciton
Coulomb interaction turns out to strongly couple different polariton modes in the
nonlinear optical regime. In order to confirm the important theoretical results, the
measurement of nonlinear optical transmission spectra for a 20 nm ZnSe sample has
been initiated and performed during the preparation of this work. The application of
our theory to this heterostructure shows excellent agreement with the experimental
results. In advance to the measurements, especially the polarization dependence of the
optically induced nonlinearities has been predicted by the theory.

The presented theory allows for the first time the simultaneous analysis of optically
induced many-particle correlations and propagation effects beyond the quasi two-
dimensional quantum-well limit. In this work, a direct theory-experiment comparison
has been presented for the propagation of a single light pulse. Further interesting results
can be expected from a forthcoming theory-experiment comparison in pump and probe
and in four wave mixing configuration. Another application for the presented theory
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represents the coherent control of excitonic and biexcitonic polarizations which provides
a wide spectrum of experimental applications. For the analysis of the coherent optical
regime which was investigated in this work, the dynamics-controlled truncation formal-
ism provides an excellent description of the system dynamics. To develop a theory for
the description of optical excitations with higher excitation densities or exceeding the
ultra short time scales, the non-equilibrium Green’s function technique32 can be applied.
In this way an inclusion of incoherent contributions to the carrier occupation functions
and the inclusion of dephasing processes on a microscopic level is possible. Neverthe-
less, the resulting theory would hardly be applicable to the system investigated in this
work because of its strongly increased numerical effort. However, besides this system,
semiconductor heterostructures with a reduced dimensionality such as quantum-wires
and especially quantum-dots attract more and more attention for technological appli-
cations in optoelectronic devices. The more general theoretical concepts applied in this
work, for instance the transition to the exciton eigenbasis and the dynamics-controlled
truncation scheme, can directly be transferred to the analysis of these low-dimensional
systems.
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A. Calculation of Transition

Amplitudes

A.1. Coulomb Matrix Elements

To deduce the Coulomb matrix elements (2.6) used for the slab geometry we start with
the Coulomb interaction in momentum space:

Vq̃ =
e20
ε0εr

1

q̃2
with q̃ = (qx, qy, qz) .

Fourier transformation applied to the z-direction yields the desired representation of
the Coulomb matrix elements in Eq. (2.6),

V zz′

q =

∫
dqz
2π

e−iqz(z−z′) e
2
0

ε0εr

1

q̃2
=

∫
dqz
2π

e−iqz(z−z′) e
2
0

ε0εr

1

q2 + q2
z

=
e20

2ε0n
2
bg

e−|q||z−z′|

|q| ,

with the in-plane momentum q = (qx, qy) and εr = n2
bg. Here the identity45

∫
dk e−ikx 1

a2 + k2
=
π

a
e−a|x|

has been used for the integration. The Fourier coefficients V mm′

kk′ (ze−zh) in the in-plane
angular momentum decomposition

V zezh

k−k′ =
1

2π

∑

mm′

e−imφkV mm′

kk′ (ze − zh)eim′φk′

of the Coulomb matrix elements in Eq. (3.6), are given by

V mm′

kk′ (ze − zh) =
1

2π

2π∫

0

dφk

2π∫

0

dφk′ eimφke−im′φk′V zezh

k−k′

=δmm′

e20
2ε0n2

bg

2π∫

0

dφ eim′φ e−|k−k′||ze−zh|

|k − k′| = δmm′V mm′

kk′ (ze − zh) ,

with |k − k′| =
√
k2 + k′2 − 2kk′ cosφ in the last line.
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A. Calculation of Transition Amplitudes

A.2. The Dynamics-Controlled Truncation

This chapter is dedicated to the Dynamics-Controlled Truncation (DCT) of expectation
values. This technique is used in Section 5.1 to overcome the many-particle hierarchy
problem in the equation of motion for the excitonic polarization. For a proper truncation
of the many-particle hierarchy in a certain order in the external field it is necessary to
characterize each relevant expectation value by its leading order in the external field.
Thinking of a power series in the external field for each expectation value, the leading
order is the first non-vanishing term in the expansion and therefore the term where the
lowest order of the external field appears.

First of all we consider an expectation value 〈. . .〉 of a normal-ordered product of elec-
tron and hole creation and annihilation operators where electron and hole operators
always occur pairwise together. For this class of expectation values the leading order
in the external field can easily be identified. The second step is to show that all other
expectation values can be expressed in terms of expectation values with pairwise oc-
currence of electron and hole operators and an additional contribution of higher order
in the external field. In order not to overburden the notation, the quantum numbers of
the system are abbreviated by ei = {e,k, ze}, hi = {h,k, zh} for the general discussion
of the DCT scheme that is not limited to the special geometry considered in this work.

For instance, we consider an expectation value 〈ψe1†ψh1†ψh2ψe2ψh3ψe3〉 which contains
one pair of electron and hole creation and two pairs of annihilation operators. The
system is in its ground state prior to an optical excitation. Since the Coulomb interac-
tion (2.5) in the system Hamiltonian (2.1) conserves the particle numbers in conduction
and valence bands individually, the system stays in its ground state as long as it is not
optically excited. This essential assumption is valid for a semiconductor material since
Coulomb-induced interband transitions that change the particle numbers in valence and
conduction bands are very unlikely because of the large band-gap energy. Therefore,
the time evolution of the many-particle state in the interaction picture is determined
by the action of the time evolution operator S on the ground state |0〉 of the electronic
many-particle system:

〈ψe1†ψh1†ψh2ψe2ψh3ψe3〉 = 〈0|S†(t, t0)ψ̄
e1†ψ̄h1†ψ̄h2ψ̄e2ψ̄h3ψ̄e3S(t, t0)|0〉 . (A.1)

Here ψ̄ denotes operators in the interaction picture26 that obey the free time-evolution
determined by the kinetic part and the Coulomb interaction in the Hamiltonian (2.1).
The time evolution of the many-particle states is given by the coupling to the external
optical field entering the time-evolution operator S which obeys the differential equation

i~
∂

∂t
S(t, t0) = H̄dipole(t)S(t, t0) ,

with the dipole Hamiltonian

H̄dipole(t) = −
∑

eh

[
ψ̄e†ψ̄h†dehE(t) + ψ̄hψ̄ed∗

ehE(t)
]
. (A.2)
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A.2. The Dynamics-Controlled Truncation

Formal integration with the condition S(t0, t0) = 1 yields the integral equation

S(t, t0) = 1 +
1

i~

t∫

t0

dt1 H̄dipole(t1)S(t1, t0) . (A.3)

An iterative solution of this equation is convenient. Using

S(t1, t0) = 1 +
1

i~

t1∫

t0

dt2 H̄dipole(t2)S(t2, t0)

for t1 ≤ t, the first step of the iteration reads

S(t, t0) = 1+
1

i~

t∫

t0

dt1 H̄dipole(t1)

+
1

(i~)2

t∫

t0

dt1

t1∫

t0

dt2 H̄dipole(t1)H̄dipole(t2)S(t2, t0) .

Further iteration yields the final result that can be written in a compact notation,78

S(t, t0) = T̂ exp

(
− i

~

t∫

t0

dt′ H̄dipole(t
′)

)
, (A.4)

with the exponential given by its definition as a power series. T̂ is the time-ordering
symbol.

To obtain a non-vanishing contribution to the expectation value (A.1), the action of
the time-evolution operator S on the ground state |0〉 and the action of the six electron
and hole operators and of S† must cancel each other to bring the system back to the
ground state |0〉 again. Note, that the electron and hole operators enter the Coulomb
interaction (2.5) always in pairs of creation and annihilation operators. So the free time
evolution of the operators ψ̄ does not cause the electronic system to leave its ground
state. Having in mind the structure of H̄dipole (A.2) and reading the exponential in
the time evolution operator (A.4) as a power series, the first non-vanishing term in
Eq. (A.1) is of order O(E3). The expansion of S contributes at least in second order
and that of S† at least in first order in H̄dipole (A.2) and therefore in the electric field
amplitude E(t). All contributions beyond the third order are at least of fifth order
in the optical field. Therefore, the leading contribution to the considered expectation
value (A.1) is of third order in the optical field, all other contributions are of higher
order resulting from further expansion of the time evolution operators S, S†.
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A. Calculation of Transition Amplitudes

Insertion of a complete set of Fock states in between creation and annihilation operators
yields a)

〈ψe1†ψh1†ψh2ψe2ψh3ψe3〉
=
∑

F

〈0|S†(t, t0)ψ̄
e1†ψ̄h1†S(t, t0)|F 〉〈F |S†(t, t0)ψ̄

h2ψ̄e2ψ̄h3ψ̄e3S(t, t0)|0〉

= 〈0|S†(t, t0)ψ̄
e1†ψ̄h1†S(t, t0)|0〉〈0|S†(t, t0)ψ̄

h2ψ̄e2ψ̄h3ψ̄e3S(t, t0)|0〉 + O(E5)

= 〈ψe1†ψh1†〉〈ψh2ψe2ψh3ψe3〉 + O(E5) . (A.5)

In the leading order, this yields the factorization of (A.1) which is exact with respect
to the lowest contributing order in the optical field, here the third order. Not only
third order contributions are considered by the factorization. A certain class of higher
order contributions is included in the factorized expectation value (A.5) while others
of higher order are neglected. The factorization (A.5) is exact being only interested in
third order contributions because none of them is neglected here. Only the ground state
contributes to the lowest order in the optical field, all contributions involving excited
states of the system are at least of fifth order. A consistent factorization beyond the
leading order (here beyond the third order) is possible but more involved, compare
Ref. 19. In fifth order, it brings into play expectation values of up to six operators
whereas in third order we are left with at most four-operator expectation values. In
general, the characterization of any expectation value by its leading order in the optical
field is possible. In analogy to the given example it can be seen that the leading order
of an arbitrary expectation value is always given by,7

〈. . .〉 = O(Em) m = max{ne, nh} , (A.6)

while ne is the number of electron operators and nh the number of hole operators
contained in the expectation value 〈. . .〉, respectively. The leading order factorization
(A.5) in terms of products of polarization-like expectation values can directly be ap-
plied if electron and hole operators occur pairwise. To extend the discussion to non
polarization-like expectation values, in a second step, the particle number conservation
in the system is used. The particle number operator N̂ in the electron-hole picture is
given by:

N̂ =
∑

ek

∫
dz ψe†

k (z)ψe
k(z) +

∑

hk

∫
dz
(
1 − ψh†

k (z)ψh
k(z)

)
.

a)Insertion of the Fock states at another position in the expectation value would automatically yield
contributions beyond the leading order.
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A.2. The Dynamics-Controlled Truncation

Insertion into the electron occupation function yields:

〈
ψe′†

k (zh)ψ
e
k(ze)N̂

〉
=N

〈
ψe′†

k (zh)ψ
e
k(ze)

〉

=
∑

e′′k′

∫
dz
〈
ψe′†

k (zh)ψ
e
k(ze)ψ

e′′†
k′ (z)ψe′′

k′ (z)
〉

+
∑

hk′

∫
dz
〈
ψe′†

k (zh)ψ
e
k(ze)

〉

−
∑

hk′

∫
dz
〈
ψe′†

k (zh)ψ
e
k(ze)ψ

h†
k′ (z)ψ

h
k′(z)

〉

=N
〈
ψe′†

k (zh)ψ
e
k(ze)

〉
−
∑

e′′k′

∫
dz
〈
ψe′†

k (zh)ψ
e′′†
k′ (z)ψe

k(ze)ψ
e′′

k′ (z)
〉

+
∑

e′′k′

∫
dz
〈
ψe′†

k (zh)ψ
e′′

k′ (z)
〉
δkk′δee′′δ(z − ze)

−
∑

hk′

∫
dz
〈
ψe′†

k (zh)ψ
h†
k′ (z)ψ

h
k′(z)ψe

k(ze)
〉
.

For the electron occupation function directly follows:

〈
ψe′†

k (zh)ψ
e
k(ze)

〉
=
∑

hk′

∫
dz
〈
ψe′†

k (zh)ψ
h†
k′ (z)ψ

h
k′(z)ψe

k(ze)
〉

+
∑

e′′k′

∫
dz
〈
ψe′†

k (zh)ψ
e′′†
k′ (z)ψe

k(ze)ψ
e′′

k′ (z)
〉
.

The leading order factorization (A.5) together with (A.6) and the in-plane homogeneity
of the system yields:

〈
ψe′†

k (zh)ψ
e
k(ze)

〉
=
∑

hk′

∫
dz
〈
ψe′†

k (zh)ψ
h†
k′ (z)

〉〈
ψh

k′(z)ψe
k(ze)

〉
δkk′ + O(E4)

=
∑

h

∫
dz p∗e

′h
(k,zh,z)p

eh
(k,ze,z) + O(E4) , (A.7)

with

p∗e
′h

(k,zh,z) =
〈
ψe′†

k (zh)ψ
h†
k′ (z)

〉
=
〈
ψh

k′(z)ψe′

k (zh)
〉∗
.

The factorization of the hole occupation function reads:

〈
ψh′†

k (ze)ψ
h
k(zh)

〉
=
∑

e

∫
dz p∗eh

′

(k,z,ze)p
eh
(k,z,zh) + O(E4) . (A.8)
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A. Calculation of Transition Amplitudes

In its leading order the electron-screened transition amplitude factorizes according to:
〈
ψe′†

k1
(z)ψe′

k2
(z)ψh

k3
(zh)ψ

e
k4

(ze)
〉

=
∑

h′k

∫
dz′
〈
ψe′†

k1
(z)ψh′†

k (z′)
〉〈
ψh′

k (z′)ψe′

k2
(z)ψh

k3
(zh)ψ

e
k4

(ze)
〉
δkk1 + O(E5)

=
∑

h′

∫
dz′p∗e

′h′

(k1,z,z′)

〈
ψh′

k1
(z′)ψe′

k2
(z)ψh

k3
(zh)ψ

e
k4

(ze)
〉

+ O(E5) . (A.9)

The hole-screened transition amplitude factorizes according to:
〈
ψh′†

k1
(z)ψh′

k2
(z)ψh

k3
(zh)ψ

e
k4

(ze)
〉

=
∑

e′k

∫
dz′
〈
ψe′†

k (z′)ψh′†
k1

(z)
〉〈
ψh′

k2
(z)ψe′

k (z′)ψh
k3

(zh)ψ
e
k4

(ze)
〉
δkk1 + O(E5)

=
∑

e′

∫
dz′p∗e

′h′

(k1,z′,z)

〈
ψh′

k2
(z)ψe′

k1
(z′)ψh

k3
(zh)ψ

e
k4

(ze)
〉

+ O(E5) . (A.10)

The consistent factorization of the required expectation values up to third order in the
optical field in this section is based on two fundamental assumptions: (i) The system is
in its ground state prior to the optical excitation. The Coulomb interaction conserves
the particle numbers in conduction and valence bands individually and consequently
does not cause the system to leave its ground state. Coulomb scattering processes that
change the particle numbers in the bands are very unlikely due to the large band-gap
energy and thus can be neglected in a very good approximation. Therefore, unless
optical excitation takes place, the electronic system is found in its ground state for zero
temperature. (ii) Exclusively optical excitation is applied to the system. Coherence
of the electronic system with respect to the exciting light field is required. Violation
of one of these assumptions destroys the exact relations (A.7)-(A.10) for the density
matrix elements.

A.3. The Two-Exciton Product Basis

In this work a description of biexcitons in terms of two-exciton product states is used. A
transition of the quantum mechanical formulation with respect to a discrete one-particle
basis to a two-particle basis is applied. In principle, this transition is exact as long as
the complete set of basis states is taken into account. Complications may arise from a
truncation of the considered set of basis states as already discussed in Section 5.2. To
guarantee at least the fermionic symmetry of the resulting states with respect to the
truncated basis, it is included in the formulation in advance.

For the given geometry, with translation invariance in the x-y-plane, the optical excita-
tion of single excitons requires the description of excitons with vanishing in-plane COM
momentum only. For the description of two interacting excitons, namely the two-
electron-two-hole system, exciton states with finite COM momentum must be taken
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A.3. The Two-Exciton Product Basis

into account. The system symmetry yields a vanishing total in-plane momentum of
the resulting four-particle states. Fortunately, in momentum space, excitons with finite
COM momentum can be described in terms of exciton wave functions φm(k, ze, zh) for
the electron-hole relative motion with a shifted momentum argument and with shifted
eigenenergies as outlined in the following. In general, an electron with momentum k+q

and a hole with momentum k obey the stationary two-particle Schrödinger equation
[
εe
k+q,ze

+ εh
k,zh

]
φ̃n(k,q, ze, zh) −

∑

k′

V zezh

k−k′φ̃n(k′,q, ze, zh) = Ẽnφ̃n(k,q, ze, zh) ,

(A.11)

which is the formulation of the eigenvalue problem corresponding to Eq. (3.8) but
for finite COM momentum q. The one-particle energies εe

k+q,ze
and εh

k,zh
are defined

according to Eq. (2.3). With the kinetic energy of electron and hole,

~
2(k + q)2

2m∗
e

+
~

2k2

2m∗
h

=
~

2(k + αq)2

2µ∗ +
~

2q2

2M∗ , (A.12)

and α = m∗
h/M

∗, Eq. (A.11) is transformed into

[
εe
k+αq,ze

+ εh
k+αq,zh

+
~

2q2

2M∗

]
φ̃n(k,q, ze, zh) −

∑

k′

V zezh

k−k′ φ̃n(k
′,q, ze, zh)

= Ẽnφ̃n(k,q, ze, zh) .

The reduced and the total exciton mass are denoted by µ∗ and M∗, respectively. Since
the in-plane exciton relative motion in this equation only depends on the momentum
k+αq, the substitutions φ̃n(k,q, ze, zh) = φn(k+αq, ze, zh) and εn(q) = Ẽn = εn + ~2q2

2M∗

are applied here. The resulting equation has the formal structure of the eigenvalue
equation (3.12) on page 33 for the exciton relative motion with a shifted momentum
argument k + αq and shifted eigenvalues εn(q):

[
εe
k+αq,ze

+ εh
k+αq,zh

+
~

2q2

2M∗

]
φn(k + αq, ze, zh) −

∑

k′

V zezh

k−k′φn(k
′ + αq, ze, zh)

= εn(q)φn(k + αq, ze, zh) .

Here εn and φn(k, ze, zh) are eigenenergies and wave functions for the exciton rela-
tive motion with vanishing COM momentum, respectively, introduced in Eq. (3.12).
Therefore, in general, the eigenstate φ̃n(k,q, ze, zh) of an exciton with finite COM mo-
mentum q equals the eigenstate φn(k + αq, ze, zh) that corresponds to an exciton with
relative momentum k+αq and vanishing COM momentum with the shifted eigenvalue
εn(q) = εn + ~2q2

2M∗ according to Eq. (3.13).

The biexcitonic correlation function be
′h′

eh is expressed in terms of the auxiliary quan-
tity b̃e

′h′

eh ,

be
′h′

eh
(k′,ze′ ,k

′+q,zh′)

(k+q,ze,k,zh) =b̃e
′h′

eh
(k′,ze′ ,k

′+q,zh′)

(k+q,ze,k,zh) + b̃ehe′h′
(k+q,ze,k,zh)
(k′,ze′ ,k

′+q,zh′ )

−b̃eh′

e′h
(k+q,ze,k′+q,zh′)

(k′,ze′ ,k,zh) − b̃e
′h

eh′
(k′,ze′ ,k,zh)

(k+q,ze,k′+q,zh′ )
, (A.13)
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which guarantees the required antisymmetry with respect to electron or hole interchange
in the following. Making use of Eq. (A.12), the auxiliary quantity b̃e

′h′

eh is expanded in
terms of exciton product states for general electron and hole momenta: b)

b̃e
′h′

eh
(k2,z2,k1,z1)
(k4,z4,k3,z3)

=
∑

nm

φn(αk4 + βk3, z4, z3)φm(αk2 + βk1, z2, z1)B
ehe′h′

nm (k4 − k3) ,

(A.14)

where β = m∗
e/M

∗, and α + β = 1. Due to the system in-plane translation symmetry,
in praxis, only terms contribute to the biexcitonic correlations with vanishing in-plane
total momentum k4−k1 +k2−k1 = 0. c) Since the internal excitonic quantum numbers
n,m are only sufficient to characterize the in-plane relative motion for each exciton state,
the expansion coefficients Behe′h′

nm (q) additionally depend on the exciton COM momenta
k4 − k3 = −(k2 − k1) to obtain a general description of the two-exciton state. The
expansion (A.14) together with Eq. (A.13) yields:

be
′h′

eh
(k′,ze′ ,k

′+q,zh′ )

(k+q,ze,k,zh) =
∑

nm

φn(k + αq, ze, zh)
[
φm(k′ + βq, ze′, zh′)Behe′h′

nm (q)

+ φn(k′ + βq, ze′ , zh′)φm(k + αq, ze, zh)B
e′h′eh
nm (−q)

− φn(αk′ + βk, ze′, zh)φm(αk + βk′ + q, ze, zh′)Be′heh′

nm (k′ − k)

− φn(αk + βk′ + q, ze, zh′)φm(αk′ + βk, ze′ , zh)B
eh′e′h
nm (k − k′)

]

=
∑

nm

[
φn(k + αq, ze, zh)φm(k′ + βq, ze′, zh′)

(
Behe′h′

nm (q) +Be′h′eh
mn (−q)

)

− φn(αk′ + βk, ze′, zh)φm(αk + βk′ + q, ze, zh′)×
×
(
Be′heh′

nm (k′ − k) +Beh′e′h
mn (k − k′)

)]

=
∑

nm

[
φn(k + αq, ze, zh)φm(k′ + βq, ze′, zh′)behe′h′

nm (q)

− φn(αk′ + βk, ze′, zh)φm(αk + βk′ + q, ze, zh′)be
′heh′

nm (k′ − k)
]
,

with the expansion coefficients behe′h′

nm (q) = Behe′h′

nm (q) + Be′h′eh
mn (−q) that determine the

contributions to the biexcitonic correlation function (A.13). In direct analogy to the
Hydrogen molecule problem a classification of the biexcitonic contributions by their
total electronic spin Se is convenient. Electronic singlet (Se = 0 =̂λ = −1) and triplet
(Se = 1 =̂λ = +1) contributions be

′h′λ
eh are given by

be
′h′λ

eh
(k′,ze′ ,k

′+q,zh′ )

(k+q,ze,k,zh) =
1

2

(
be

′h′

eh
(k′,ze′ ,k

′+q,zh′ )

(k+q,ze,k,zh) + λbeh
′

e′h
(k′,ze′ ,k

′+q,zh′ )

(k+q,ze,k,zh)

)
,

b)Fermionic symmetry is guaranteed by the ansatz (A.13) for each term in the expansion separately.
c)By definition, hole momenta come with a minus sign compared to the corresponding electronic one.
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A.3. The Two-Exciton Product Basis

in terms of the biexcitonic correlation function (A.13). Therefore, the original biexci-
tonic correlation function (A.13) is just the sum of electronic singlet and triplet contri-
bution. The final expansion in terms of two-exciton product states reads

be
′h′λ

eh
(k′,ze′ ,k

′+q,zh′ )

(k+q,ze,k,zh) =
∑

nm

[
φn(k + αq, ze, zh)φm(k′ + βq, ze′ , zh′)behe′h′λ

nm (q)

− λφn(αk′ + βk, ze′ , zh)φm(αk + βk′ + q, ze, zh′)behe′h′λ
nm (k′ − k)

]
,

(A.15)

with expansion coefficients behe′h′λ
nm (q) = 1

2

(
behe′h′

nm (q) + λbe
′heh′

nm (q)
)

for electronic singlet
and triplet configuration. Using expansion (A.15) together with Eq. (5.9), the cor-
responding equations of motion for the excitonic peh

m (5.12) and biexcitonic behe′h′λ
nm (q)

(5.13) coefficients are deduced with

i~
∂

∂t
be

′h′λ
eh

(k′,ze′ ,k
′+q,zh′ )

(k+q,ze,k,zh) = i~
1

2

∂

∂t
be

′h′

eh
(k′,ze′ ,k

′+q,zh′)

(k+q,ze,k,zh) + λi~
1

2

∂

∂t
beh

′

e′h
(k′,ze′ ,k

′+q,zh′)

(k+q,ze,k,zh) .

The two subspaces (λ = ±1) are decoupled because of the conservation of the to-
tal electron spin Se. Using the expansion presented in this section, by construction,
proper fermionic symmetry of the biexciton states is guaranteed in advance. All biex-
citonic contributions to the system dynamics fulfill the required fermionic symmetry
even within a truncated exciton basis. All other properties, e.g., selection rules, follow
from the equations of motion (5.12) and (5.13).
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B. Numerical Techniques and Results

This chapter is dedicated to the discussion of numerical problems that arose during the
preparation of the present work. Some fundamental numerical concepts and techniques
for their solution are presented. Section B.1 gives an insight into the direct discretiza-
tion of the excitonic Hamiltonian in real space and momentum space and into concepts
for the numerical integration of the time evolution of the excitonic dynamics. In Sec-
tion B.2 the numerical discretization of the one-dimensional Maxwell equations, which
are coupled partial differential equations in space and time, is summarized. Section B.3
is devoted to the calculation of the biexcitonic Hamiltonian matrix with respect to the
two-exciton product basis.

B.1. The Exciton Equation

In this section the numerical approach to the solution of the inhomogeneous exciton
equation (3.8) on page 29 is summarized. First of all, we consider a general equation,
that has the formal structure of the inhomogeneous exciton equation regarding its time-
dependence:

i~
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 + φ(t) . (B.1)

H denotes the Hamiltonian of the considered system and φ(t) is a time-dependent
driving term that, in case of the exciton equation contains the dipole coupling to the
external field. The free a) time evolution of the state |ψ(t)〉 is determined by the action
of the Hamiltonian H. Formally, the time evolution of the state |ψ(t0)〉 to a time
t ≥ t0 can be expressed in terms of the time evolution operator U(t, t0) acting on the
state |ψ(t0)〉:

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 .

As long as H does not contain an explicit time-dependence, formal integration of the
time evolution yields the time evolution operator in the form:

U(t, t0) = U(t− t0) = e−
i
~
H·(t−t0) .

a)The free time evolution of |ψ(t)〉 is determined by the corresponding homogeneous equation
i~ ∂

∂t
|ψ(t)〉 = H|ψ(t)〉 and is not coupled to the external driving term φ(t).
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Starting from

|ψ(t+ ∆t)〉 − |ψ(t− ∆t)〉 =
(
e−

i
~
H∆t − e+ i

~
H∆t
)
|ψ(t)〉 ,

and expanding the exponentials for a small time step ∆t up to linear order in ∆t, an ex-
plicit scheme can be deduced for the calculation of the state |ψ(t+ ∆t)〉 at time t+ ∆t:

|ψ(t+ ∆t)〉 = |ψ(t− ∆t)〉 − 2
i

~
H |ψ(t)〉∆t .

This formulation is equivalent to a symmetric substitution of the time derivative in
Eq. (B.1) at time t by a difference quotient with a finite step size ∆t. Therefore, the
scheme requires the solutions at times t and t − ∆t to calculate the solution at time
t+∆t. Due to this symmetric formulation, the accuracy of the result is exact in second
order in the step size ∆t.79 Therefore, it is called Second Order Differencing (SOD)
scheme.80 The stability limit is determined by the spectral properties of the operator
H. Stable behavior of the solution is obtained for

∆t < ~/|Emax| , (B.2)

where Emax denotes the eigenvalue of H with largest magnitude.80 The inclusion of the
inhomogeneity in Eq. (B.1) yields the more general result:

|ψ(t+ ∆t)〉 = |ψ(t− ∆t)〉 − 2
i

~

[
H |ψ(t)〉 + φ(t)

]
∆t . (B.3)

The great advantage of the SOD scheme is its simplicity, paired with a comparatively
high accuracy. The calculation requires the evaluation of the action of H on the state
|ψ(t)〉 only once for each time step. For instance, the Euler algorithm, where a non-
symmetric time derivative is used requires a similar numerical effort but only yields
results being correct in first order in the step size ∆t. In particular, the SOD scheme
conserves the norm of the state for a hermitian Hamiltonian H.80 For the time evolu-
tion that is determined by a non hermitian operator H this scheme does not yield a
stable result. Strictly speaking, the hermicity of the Hamiltonian HX for the excitonic
polarization is lost by introduction of a phenomenological dephasing constant. Never-
theless, in favor of its simplicity, the SOD scheme is used for the integration of the time
evolution of the exciton equation (3.8). The decay of the macroscopic polarization is
sufficiently fast to obtain convergence of the optical spectra before exponentially grow-
ing contributions in the solution yield an artificial growth of the polarization which
would influence the final result. A fourth order Runge-Kutta algorithm81 has some
shortcomings in comparison to the SOD scheme. The numerical effort is much higher
since it requires four evaluations of the action of the Hamiltonian on the state for each
time step. Furthermore, it does not exactly conserve the norm of the state during the
time evolution. Nevertheless, the advantage of a fourth order Runge-Kutta scheme
is its high accuracy and in particular its stability for a system with a non hermitian
Hamiltonian H.
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B.1. The Exciton Equation

For the direct integration of Eq. (3.8) the SOD scheme is applied to avoid a waste
of computing time, whereas in nonlinear optics we apply a fourth order Runge-Kutta
algorithm in favor of its higher stability.

For a numerical calculation of the time-evolution of Eq. (3.8) an explicit matrix repre-
sentation of the excitonic Hamiltonian HX is required. Therefore, all relevant quantities
are discretized on a grid with finite step size in real and momentum space. The spatial
derivatives of the excitonic polarization are substituted according to their definition,
here given for a general function f(x) at grid point xn with a finite step size h:

d2

dx2
f(x)

∣∣∣
xn

≈ 2f(xn) − f(xn−1) − f(xn+1)

h2
. (B.4)

In the following, the indices for the different coordinate grids for electron {zu
e } and

hole {zv
h} z-coordinates and for the in-plane relative momentum {kj} are abbreviated

by i=̂{u, v, j}. This yields the formal structure of the exciton equation (3.8) on the
discrete coordinate grid

i~
∂

∂t
pi(t) =

∑

l

Hilpl(t) + φi(t) ,

and, according to Eq. (B.3), for discrete time steps ∆t denoted by the upper index n:

pn+1
i = pn−1

i − 2
i

~

[∑

l

Hilp
n
l + φn

i

]
∆t . (B.5)

The structure of the spatial derivatives (B.4) yields a Hamiltonian matrix which only
couples pn(kj , z

u
e , z

v
h) to the four neighboring grid points (zu+1

e , zv
h), (zu−1

e , zv
h), (zu

e , z
v+1
h ),

(zu
e , z

v−1
h ) in real space. b) The Coulomb interaction is diagonal with respect to the real

space coordinates, thus it only couples all different momentum contributions kj for fixed
spatial coordinates. An efficient numerical implementation of the coupled space-time
dynamics in Eq. (B.5) on a parallel computer architecture has been achieved by use of
the Message Passing Interface82,83 (MPI) following Ref. 84.

In case of the exciton equation (3.8) the Coulomb matrix elements contain a singular
contribution on the diagonal of the Hamiltonian matrix Hil in Eq. (B.5) for kj = kj′.
Therefore, to obtain reliable numerical results, a very large number of grid points in
k-space would be necessary, resulting in a very large matrix Hil. To overcome this
problem, the singularity is removed numerically as outlined in the following. This
way, a formulation is achieved where the evaluation of the Coulomb singularity can be
performed independently of the underlying momentum space grid for the discretization
of the excitonic Hamiltonian.

b)The structure of the spatial derivatives (B.4) yields a Hamiltonian matrix Hil with a low density of
non-zero matrix elements, a so-called sparse matrix.
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To demonstrate the numerical removal of the Coulomb singularity in momentum space
we suppress time and real space arguments in the notation in the following example.
The structure of the exciton equation (3.8) regarding the momentum space dependence
of the Coulomb interaction corresponds to the following expression:

f(k) =

∫
dk′ V (k, k′)g(k′) . (B.6)

This relation of f(k) and g(k) can be expressed by a term that is regular for k = k′ and
an additional contribution that still contains the singularity for k = k′:

f(k) =

∫
dk′ V (k, k′)g(k′) =

∫
dk′ V (k, k′)[g(k′) − g(k)α(k, k′)]︸ ︷︷ ︸

regular for k = k′

+ g(k)

∫
dk′ V (k, k′)α(k, k′)︸ ︷︷ ︸

singular for k = k′

with α(k, k′) = 1 for k = k′ .

The transition to an arbitrary grid in momentum space with discrete values {kj} yields
the formulation:

f(ki) =
∑

j 6=i

V (ki, kj)g(kj)wkj
+
∑

j

(−Iα
kj

+ Ising
kj

)g(kj)δij , (B.7)

with

Iα
kj

=
∑

l 6=j

V (kj, kl)α(kj, kl)wkl
, Ising

kj
=

∫
dk′ V (k, k′)α(k, k′) , (B.8)

and the step size (weight factor) wkj
for each grid point kj. Equation (B.7) can be

rewritten as a matrix equation of the form

f(ki) =
∑

j

Vkikj
g(kj) , (B.9)

with the definition of the Coulomb matrix

Vkikj
=

{
V (ki, kj)wkj

for ki 6= kj

−Iα
kj

+ Ising
kj

for ki = kj
. (B.10)

An appropriate choice of the factor α(k, k′) is given by

α(k, k′) =
4k4

(k2 + k′2)2
.

It fulfills the requirement α(k, k) = 1 and provides a cut-off in the integration of the
Coulomb singularity in Eq. (B.8) since it rapidly falls of in the limit k′ − k → ∞.
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The great advantage of treating the Coulomb singularity in the way presented above,
is the formal transfer of the singularity in the evaluation of the Coulomb integral (B.6)
to the function Ising

kj
in Eq. (B.10). Therefore the evaluation of the Coulomb singularity

can be performed independently of the discrete momentum space grid {kj} on which
the action of the Coulomb matrix Vkikj

on the function g(kj) is defined according to
Eq. (B.9). The integration in Ising

kj
is done by use of Gaussian quadrature points ac-

cumulated around the singularity at k = k′, while α(k, k′) provides a cut-off for large
k′ − k.

In Section 3.2, the transition to the exciton eigenbasis requires the diagonalization of
the matrix Hil corresponding to the discretized excitonic Hamiltonian HX. As described
in this section, the discretization is applied to the real space coordinates ze, zh as well
as to the electron-hole relative momentum k. For the investigated layer thicknesses
typical matrix dimensions are of the order N ≈ 105 − 106. As already mentioned,
corresponding to Eq. (B.4), the derivatives in real space only couple neighboring points
on the real space grid. This results in a Hamiltonian matrix where the number of non-
zero matrix elements is only of order N . For the C++ programming language, efficient
algorithms for the calculation of a certain part of the eigenspectrum of these so-called
sparse matrices are provided by Arpack++.85 Since the basic routines are based on
Fortran code, Arpack++ provides an object oriented interface in terms of a template
class library. The possibility for efficient parallelization is provided with parpack which
supports the MPI concept. Economic storage of sparse matrices regarding the required
amount of memory is done in the Compressed Sparse Column85 (CSC) format which is
supported by Arpack++ routines. The CSC format requires storage of the row index
of each matrix element not being equal zero, the value of the matrix element itself, and
the storage position of he first non-zero element in each column in the matrix. Zero
entries are not explicitly stored.

B.2. Maxwell’s Equations

The solution of a partial differential equation can be found by the method of charac-
teristics. c) The free solutions of Maxwell’s equations in a material with background
refractive index nbg propagate in space with the velocity of light c = c0/nbg. Making
use of this characteristic knowledge about the desired solutions, a certain relation is ob-
tained for the discretization of space and time: The step sizes ∆z and ∆t on a discrete
space and time grid are connected by the velocity of light c in the material, ∆z = c ·∆t.
For the numerical solution, this relation allows a formal transformation of Maxwell’s
equations to an equivalent set of ordinary differential equations as outlined in this sec-
tion. Furthermore, for the application in this work the use of Hartree’s method86 is
advantageous for the discretization since it avoids an artificial reflection of light at the
boundaries of the numerical space grid.84

c)Details, concerning this method, going beyond the solution of the one-dimensional Maxwell equations
are given in Ref. 86.
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The macroscopic Maxwell equations with a permeability µr = 1 and without free charges
ρfree = 0 ared)

∇E = 0 , (B.11)

∇B = 0 , (B.12)

∇× B = µ0j + µ0ε0εr
∂E

∂t
+ µ0

∂P

∂t
, (B.13)

∇× E = −∂B
∂t

. (B.14)

The ansatz E(r, t) = E+(z, t)e+ + E−(z, t)e− for the electric field and B(r, t) =
B+(z, t)ie+ +B−(z, t)ie− for the magnetic field for a transversal electromagnetic wave
propagating in the z-direction solves the homogeneous Eqs. (B.11) and (B.12). With
j = j+(z, t)e+ + j−(z, t)e− and P = P+(z, t)e+ + P−(z, t)e− in terms of circularly
polarized components (±), the one-dimensional Maxwell equations are obtained:

n2
bg(z)

∂E±(z, t)

∂t
= −c20

∂B±(z, t)

∂z
− 1

ε0

(
j±(z, t) +

∂P±(z, t)

∂t

)
, (B.15)

∂B±(z, t)

∂t
= −∂E±(z, t)

∂z
, (B.16)

with the background refractive index profile n2
bg(z) = εr(z). Note, that these scalar

equations are decoupled for the different circularly polarized components (±) of elec-
tric and magnetic field. Therefore, in the following, the index ± is suppressed and the
discussion is done for one of the circularly polarized components. The velocity of light
in the material is c = c0/nbg = 1/(nbg

√
µ0ε0). The solution of Maxwell’s equations

(B.15) and (B.16) is coupled to the solution of the material equations which determine
the macroscopic polarization P (z, t). For the numerical solution, the explicit occur-
rence of the band-gap energy Egap in the material equations (3.2) or (5.8) and (5.9)
is inconvenient regarding the stability limit (B.2) for the numerical integration of the
time evolution as discussed in the previous section. The resulting fast oscillations of
the desired solutions in time necessitate very small time steps in the numerical integra-
tion. To eliminate the occurrence of Egap all dynamic quantities X(t) are transformed
to the rotating picture via X(t) = e−iω0tX̃(t), with ω0 = Egap/~. Application of this
transformation to the one-dimensional Maxwell equations yields the Maxwell equations
in the rotating picture: e)

∂Ẽ

∂t
+

c20
n2

bg

∂B̃

∂z
= −J̃ + iω0Ẽ with J̃ =

1

ε0n2
bg

(
j̃ +

∂P̃

∂t
− iω0P̃

)
, (B.17)

∂B̃

∂t
+
∂Ẽ

∂z
= iω0B̃ . (B.18)

d)For the numerical simulation, the current density j is included here in the description as an appropriate
device for laser pulse generation outside of the investigated sample.

e)In the following, the transformation of the dynamic quantities will not be made explicit in the notation,
so the tilde symbol is suppressed.
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Discrete version of the one-dimensional Maxwell equations:

To find a numerical solution of Eqs. (B.17) and (B.18) the method of characteristics is
applied, following Ref. 86. The dynamic quantities E → u and B → v and their total
derivatives form a system of linear equations:

aux + evy = f1 , (B.19)

buy + cvx = f2 , (B.20)

uxdx+ uydy = du , (B.21)

vxdx+ vydy = dv , (B.22)

with the definitions z → x, t→ y, ux = ∂u
∂x

, uy = ∂u
∂y

, vx = ∂v
∂x

, vy = ∂v
∂y

and a = b = e =

1, c = c20/n
2
bg, f2 = −J + iω0E, f1 = iω0B. This yields a linear system of equations in

the quantities ux, uy, vx, vy:




a 0 0 e
0 b c 0
dx dy 0 0
0 0 dx dy





︸ ︷︷ ︸
A





ux

uy

vx

vy



 =





f1

f2

du
dv



 ,

with the matrix A. For a unique solution, a characteristic equation is found by the
requirement detA = 0: f)

detA = 0 → ac(dy)2 − be(dx)2 = 0 ,

→ dx
dy

= ±
√
ac

be
= ± c0

nbg
= F±(x) = F± . (B.23)

This characteristic equation represents the propagating F+(x) and counter-propagating
F−(x) solutions of light. The solution at a time-space point R (space xR =̂ zR and
time yR =̂ tR) only depends on the solutions with xP < xR < xQ (zP < zR < zQ)
at time yP = yQ (tP = tQ), as illustrated in Fig. B.1. The time-space evolution of
electromagnetic waves obeys the characteristic equation (B.23). For detA = 0 there is
a linear dependence of the columns in A.87 To find a solution for the system of linear
equations (B.19)-(B.22) with non-vanishing inhomogeneity on the right hand side, the
inhomogeneity is chosen as a particular linear combination in terms of the columns of
A. This approach yields a linear system where the columns still linearly depend on each
other and which fulfills

det





f1 0 0 e
f2 b c 0
du dy 0 0
dv 0 dx dy



 = 0 .

f)At this point, the formulation is restricted to optical homogeneity nbg(z) = nbg of the considered
material. Nevertheless, in principle the inclusion of a background refractive index profile nbg(z) is
possible within this approach.
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Figure B.1: Illustration of the discrete time-space grid for the application of Hartree’s method
to the one-dimensional Maxwell equations.

Use of the characteristic equation (B.23) yields

dv +G±du+H±dy = 0 with G± =
b

c
F± and H± = −

(f1

e
+
f2

c
F±

)
.

Maxwell’s equations (B.17) and (B.18) can now be discretized with respect to the
characteristic equation, following Hartree’s method in Ref. 86 according to Fig. B.1 for
the time-space grid points P , Q, R:

xR − xP =
1

2
[F+(R) + F+(P )]∆y , (B.24)

xR − xQ =
1

2
[F−(R) + F−(Q)] ∆y , (B.25)

vR − vP +
1

2
[G+(R) +G+(P )] (uR − uP ) +

1

2
[H+(R) +H+(P )]∆y = 0 , (B.26)

vR − vQ +
1

2
[G−(R) +G−(Q)] (uR − uQ) +

1

2
[H−(R) +H−(Q)] ∆y = 0 . (B.27)

In case of the one-dimensional Maxwell equations the abbreviations introduced here,
are explicitly given by:

G± =
b

c
F± = ± c0

nbg
,

H± = −
(f1

e
+
f2

c
F±

)
= −iω0v ±

nbg

c0
(J − iω0u) .

Equations (B.24) and (B.25) yield

xR − xP =
c0
2

( 1

nbg

+
1

nbg

)
∆y ,

xQ − xR =
c0
2

( 1

nbg

+
1

nbg

)
∆y ,
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which is just the characteristic equation (B.23) in its discretized form:

∆x = xR − xP = xQ − xR =
c0
nbg

∆y .

The electromagnetic fields at point R are obtained from Eqs. (B.26) and (B.27):

vR − vP + (uR − uP )
nbg

c0
+

∆y

2

[
nbg

c0
JR − iω0

nbg

c0
uR − iω0vR

]
+

∆y

2
H+(P ) = 0 ,

vR − vQ − (uR − uQ)
nbg

c0
+

∆y

2

[
−nbg

c0
JR + iω0

nbg

c0
uR − iω0vR

]
+

∆y

2
H−(Q) = 0 ,

which yields

vR

(
1 − iω0

∆y

2

)
+ uR

(
1 − iω0

∆y

2

)nbg

c0
= vP + uP

nbg

c0
− ∆y

2

[
nbg

c0
JR +H+(P )

]
,

(∗)

vR

(
1 − iω0

∆y

2

)
− uR

(
1 − iω0

∆y

2

)nbg

c0
= vQ − uQ

nbg

c0
+

∆y

2

[
nbg

c0
JR −H−(Q)

]
.

(∗∗)
Sum and difference of these equation are:

(∗) − (∗∗) 2uR

(
1 − iω0

∆y

2

)nbg

c0
=

vP + uP
nbg

c0
− vQ + uQ

nbg

c0
− ∆yJR

nbg

c0
− ∆y

2
[H+(P ) −H−(Q)] ,

(∗) + (∗∗) 2vR

(
1 − iω0

∆y

2

)
= vP + uP

nbg

c0
+ vQ − uQ

nbg

c0
− ∆y

2
[H+(P ) +H−(Q)] .

Using the definition of H± again yields

2uR

(
1 − iω0

∆y

2

)nbg

c0
= (vP − vQ)

(
1 +

∆y

2
iω0

)
+ (uP + uQ)

(
1 +

∆y

2
iω0

)nbg

c0

− ∆y

2
(2JR + JP + JQ)

nbg

c0
,

2vR

(
1 − iω0

∆y

2

)
= (vP + vQ)

(
1 +

∆y

2
iω0

)
+ (uP − uQ)

(
1 +

∆y

2
iω0

)nbg

c0

− ∆y

2
(JP − JQ)

nbg

c0
.

The discrete form of Maxwell’s equations defined on a discrete space {zj} and time {tn}
grid is obtained with the following transitions:

R = tn+1, zj uR = En+1
j vR = Bn+1

j

P = tn, zj−1 → uP = En
j−1 vP = Bn

j−1

Q = tn, zj+1 uQ = En
j+1 vQ = Bn

j+1
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Therefore, the final result for the numerical implementation is given by:

En+1
j =

c0
2nbg

η

η∗
(
Bn

j−1 − Bn
j+1

)
+

η

2η∗
(
En

j−1 + En
j+1

)
− ∆t

4η∗
(
2Jn+1

j + Jn
j−1 + Jn

j+1

)
,

Bn+1
j =

η

2η∗
(
Bn

j−1 +Bn
j+1

)
+
nbg

2c0

η

η∗
(
En

j−1 − En
j+1

)
− nbg

c0

∆t

4η∗
(
Jn

j−1 − Jn
j+1

)
,

with η = 1 + iω0
∆t

2
and J =

1

ε0n
2
bg

(
j +

∂P

∂t
− iω0P

)
.

The index n corresponds to the discrete steps in time and the index j denotes the
position on the discrete space grid.

B.3. The Biexciton Equation

The evaluation of the Coulomb matrix elements in the two-exciton product basis turns
out to be numerically very demanding, especially parts of the exchange interaction
matrix element WXC

nmn′m′(q, q′) (5.16) with its four-fold real space integral cannot be fac-
torized at all. For the spatially inhomogeneous system care must be taken for a proper
treatment of the Coulomb singularity in WC

nmn′m′(q,q′) and WXC
nmn′m′(q,q′). It has been

removed numerically in analogy to Appendix B.1. All told, the numerical calculation
is a challenge. Being well-suited for a parallel evaluation on several processing units,
it has been performed on a modern IBM Regatta supercomputer system. A very effi-
cient distribution to several processing units is possible since each matrix element does
not depend on the others and therefore only a very small amount of communication
is needed. Once evaluated, the matrix elements can be stored for each given set of
material parameters. Using this input data the solution of the equations of motion can
be performed on a desktop computer, using a fourth order Runge-Kutta algorithm for
the material equations (5.12) and (5.13) and Hartree’s method for the discretization of
Maxwell’s equations (3.4a) and (3.4b). The solutions are obtained in the rotating pic-
ture to eliminate the large band-gap energies in the material equations. More general
details concerning Hartree’s method are given in Ref. 86 and their application to the
one-dimensional Maxwell equations is summarized in the previous section.

For a proper evaluation of the matrix elements, the numerical discretization scheme of
real space coordinates and in-plane momenta has to be chosen very carefully. To avoid
a waste of computing resources for the very time consuming calculations, Gaussian
quadrature points are chosen for the evaluation of momentum space integrals. This
way, compared to an equidistantly chosen grid, much better numerical convergence
with a comparably small number of quadrature points is obtained. In the end, good
numerical convergence for the nonlinear transmission spectra and the biexciton binding
energy is reached using the following sets of grid points for the solution of the excitonic
and biexcitonic problem. For the exciton wave functions, typically a real space step
size of ≈ 0.1 aX

0 and 70 Gaussian quadrature points in momentum space accumulated
below k = 20/aX

0 are used.
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Biexciton grid points are typically chosen to 16 angle points, 32 Gaussian q and k
quadrature points, and 24 equidistant points for real space integrals. Contributions
from in plane momenta k with k > 20/aX

0 can be neglected in a very good approxima-
tion because all relevant wave functions and Coulomb matrix elements vanish for large
momenta, compare Figs. 5.1, 5.2 on pages 81, 82 and Figs. B.2-B.5.

B.3.1. Coulomb Matrix Elements

In addition to the results shown in Section 5.3.1 on page 81, Figs. B.2-B.5 show ex-
amples for inter-site diagonal and off-diagonal blocks of the direct WC

nmn′m′(q, q′) (5.15)
and exchange WXC

nmn′m′(q, q′) (5.16) two-exciton Coulomb interaction. Even qualita-
tively different shapes are found, depending on the internal exciton quantum numbers
n,m, n′, m′ and therefore depending on the space-dependence of the contributing exci-
ton states φm(k, ze, zh). The two-exciton exchange matrix elements WXC

nmn′m′(q, q′) show
a similar shape for all on-site and inter-site diagonal matrix elements, only quantitative
differences are obtained. Two typical examples are shown in Figs. 5.2 and B.4. Fig-
ure B.5 gives an example for an off-diagonal block. The grid lines on the surface plots
are connected to the discretization of the exciton-exciton relative momenta q according
to Section B.3. These grid points are accumulated in momentum space regions with
large variation of the magnitude of the Coulomb matrix elements.
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Figure B.2: Inter-site diagonal matrix element WC
0101(q, q

′) of the direct exciton-exciton
Coulomb interaction (5.15). Left: Surface plot. Right: Contour plot.
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Figure B.3: Off-diagonal matrix element WC
0022(q, q

′) of the direct exciton-exciton Coulomb
interaction (5.15). Left: Surface plot. Right: Contour plot.
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Figure B.5: Off-diagonal matrix element WXC
0022(q, q

′) of the exchange exciton-exciton
Coulomb interaction (5.16). Left: Surface plot. Right: Contour plot.

B.3.2. Matrix Elements in the One-Particle Product Basis

An alternative method for the calculation of the matrix elements in the two-exciton
product basis is discussed in this section. Expanding the real space dependence of
the exciton eigenfunctions φm(k, ze, zh) in terms of products of one-particle eigenstates
χi(ze) for electrons and ϕj(zh) for holes,

φm(k, ze, zh) =
∑

ij

am
ij (k)χi(ze)ϕj(zh) , (B.28)

a multi-subband representation of the matrix elements (5.15), (5.16), (5.20) is obtained.
The contributions of the subbands i, j are determined by the expansion coefficients

am
ij (k) =

∫
dzedzhχ∗

i (ze)ϕ
∗
j(zh)φm(k, ze, zh) . (B.29)

The exciton eigenenergy εm may serve as an estimate for the convergence of the ex-
pansion (B.28) with increasing number of considered one-particle states. εm is given
by the expectation value of the exciton Hamiltonian HX with respect to the mth

eigenstate |m〉 g)

εm = 〈m|HX|m〉 =
∑

ijklkk′

am∗
ij (k)H ijkl

kk′ a
m
kl(k

′)

=
∑

ijk

|am
ij (k)|2

(
εe

i + εh
j + Egap +

~
2k2

2µ∗

)
+
∑

ijklkk′

V ijkl
kk′ a

m∗
ij (k)am

kl(k
′) .

g)The Coulomb matrix elements V ijkl
kk′ =

∫
dzedzhχ

∗
i (ze)ϕ

∗
j (zh)Vkk′(ze−zh)χk(ze)ϕl(zh) and one-particle

energies εei , ε
h
j are defined in analogy to Section 3.4.
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This expression can be evaluated with respect to approximated exciton states am
ij (k) by

truncation of the i, j-sum over one-particle states in Eq. (B.28). The calculation of the
exciton eigenstates φm(k, ze, zh) is done in real space. This approach is advantageous
to the calculation with respect to a discrete one-particle basis as already discussed in
Section 3.4. The contributions am

ij (k) of the one-particle states i, j are calculated by
use of Eq. (B.29).

The coefficients (B.29) are not identical to those that follow from a direct calculation
of the exciton eigenstates in a truncated one-particle basis as done in Section 3.4. For
the calculations in Section 3.4 Coulomb interaction with particles in higher one-particle
states is neglected from the beginning, whereas these contributions are at first taken
into account for the calculation of the exciton states φm(k, ze, zh) in this section. This
results in a different k-dependence of the am

ij (k) compared to the eigenstates obtained in
Section 3.4. Neglecting higher one-particle states in Section 3.4 from the very beginning
also influences the contributions from lower ones. Nevertheless, the diagonalization of
the exciton Hamiltonian in Section 3.4 with respect to a truncated one-particle basis
yields exact eigenstates within the considered basis, whereas strictly speaking the am

ij (k)
in Eq. (5.22) are no eigenstates to the Hamiltonian HX in the truncated basis of one-
particle states. Agreement of the exciton eigenstates in Section 3.4 and the am

ij (k) in this
section is only obtained if the complete set of one-particle states is taken into account
for both calculations. The expansion (B.28) may be used as a numerical technique for
the calculation of Coulomb matrix elements. It only yields meaningful results as long
as sufficient numerical convergence of the expansion (B.28) with the considered number
of one-particle states is reached.

The expansion (B.28), together with (5.15), (5.16), (5.20), results in the biexcitonic
matrix elements in the one-particle product basis, here given for infinitely high potential
barriers: h)

WC
nmn′m′(q,q′) =

∑

ijkl

[

V ijkl
q−

[∑

kr

(
an∗

rj (k)an′

rk(k + βq−) − an∗
jr (k)an′

kr(k − αq−)
)]

×
[∑

k′s

(
am∗

si (k′)am′

sl (k′ − βq−) − am∗
is (k′)am′

ls (k′ + αq−)
)]
]

, (B.30)

WXC
nmn′m′(q,q′) =

∑

kk′

∑

ijklrs

an∗
ij (k + αq−)am∗

kl (k′ + βq+)

×
[
V ijsr

k−k′a
n′

ks(k
′)am′

rl (k′ + αq− + βq+) − V ljsr
k−k′a

n′

ks(k
′)am′

ir (k + αq− + βq+)

+V klsr
k−k′an′

rj(k)am′

is (k + αq− + βq+) − V kisr
k−k′an′

rj(k)am′

sl (k′ + αq− + βq+)

]
,

(B.31)

h)The inclusion of finite potential barriers in this formulation is no problem in general but further
complicates the notation since electron and hole one-particle wave functions which enter the Coulomb
matrix elements would no longer be equal.
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Snmn′m′(q,q′) =
∑

k

∑

ijkl

an∗
ij (k + αq)am∗

kl (k + q′ + βq)an′

kj(k + αq′)am′

il (k + q + βq′) .

(B.32)

These matrix elements with contributions from several subbands represent a multi-
subband version of the matrix elements given in Ref. 67 for a two-dimensional system.
The result therein is reproduced by the one-subband limit with am

00(k) being the two-
dimensional exciton wave function.

Finally, according to the expansion (B.28), the z-dependence of the system has been
expressed in terms of several electronic subbands for the calculation of the biexcitonic
matrix elements. Taking into account more than one subband becomes necessary for
layers with finite thickness leaving the quasi two-dimensional quantum-well limit. An
analysis of the influence of the dimensionality on the contributions from higher subbands
has been given in Section 5.3.2. For thin quantum-wells the inclusion of only one
subband is sufficient in a very good approximation.

In contradiction to the one-subband version in Ref. 67, the Coulomb singularities in
(B.30) and (B.31) do not vanish anymore and have to be removed carefully in analogy
to Appendix B.1. The calculation of the exchange matrix (B.31) turns out to be most
time-consuming. The numerical effort for its calculation increases with the number of
considered one-particle states to the power of six whereas the real space representation
led to a four-fold real space integral in Eq. (5.16). For rather thin layers (L . 5 aX

0 ) with
good convergence of the expansion in Eq. (B.28), only a few coefficients am

ij (k) have to be
taken into account. In that case the evaluation of a six-fold sum in Eq. (B.31) over one-
particle states becomes less demanding than a proper evaluation of the corresponding
four-fold real space integral in Eq. (5.16). For thicker layer (L & 5 aX

0 ) the situation is
just vice versa.
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translation invariance, 12, 39, 122
transmission changes, 103, 109
transmission spectrum, 31, 49, 61

valence band, 9, 57
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wave functions, 19, 33, 123

ZnSe, 9, 59, 60

148



Bibliography

[1] S. L. Chuang. Physics of optoelectronic devices. Wiley series in pure and applied optics.
Wiley-Interscience publication, New York, 1995.

[2] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and
A. Imamoglu. A quantum dot single-photon turnstile device. Science, 290:2282, 2000.

[3] A. D’Andrea and R. Del Sole. Wannier-mott excitons in semi-infinite crystals: Wave
functions and normal-incidence reflectivity. Phys. Rev. B, 25(6):3714, 1982.

[4] A. D’Andrea and N. Tomassini. Exciton quantization in symmetric and asymmetric
quantum wells: Pseudo-two-dimensional behavior. Phys. Rev. B, 47(12):7176, 1993.

[5] J. Tignon, T. Hasche, D. S. Chemla, H. C. Schneider, F. Jahnke, and S. W. Koch.
Unified picture of polariton propagation in bulk GaAs semiconductors. Phys. Rev. Lett.,
84(15):3382, 2000.

[6] H. C. Schneider, F. Jahnke, S. W. Koch, J. Tignon, T. Hasche, and D. S. Chemla.
Polariton propagation in high quality semiconductors: Microscopic theory and experiment
versus additional boundary conditions. Phys. Rev. B, 63:045202, 2001.

[7] V. M. Axt and A. Stahl. A dynamics-controlled truncation scheme for the hierarchy of
density matrices in semiconductor optics. Z. Phys. B, 93:195, 1994.

[8] V. M. Axt and A. Stahl. The role of the biexciton in a dynamic density matrix theory of
the semiconductor band edge. Z. Phys. B, 93:205, 1994.

[9] M. Lindberg, Y. Z. Hu, R. Binder, and S. W. Koch. χ(3) formalism in optically excited
semiconductors and its applications in four-wave-mixing spectroscopy. Phys. Rev. B,
50(24):18060, 1994.

[10] J. J. Hopfield. Theory of the contribution of excitons to the complex dielectric constant
of crystals. Phys. Rev., 112(5):1555, 1958.

[11] H. Haug and S. W. Koch. Quantum Theory of the Optical and Electronic Properties of

Semiconductors. World Scientific Publishing, Singapore, 3rd edition, 1995.

[12] S. Lankes, M. Meier, T. Reisinger, and W. Gebhardt. Hole mass determination in ZnSe
by observation of standing polariton waves. J. Appl. Phys., 80(7):4049, 1996.

[13] U. Neukirch, K. Wundke, J. Gutowski, and D. Hommel. Propagation of femtosecond
pulses in thin ZnSe layers. Phys. Stat. Sol. B, 196:473, 1996.

149



Bibliography

[14] Z. K. Tang, A. Yanase, Y Segawa, N. Matsuura, and K. Cho. Quantization of excitons
in CuCl epitaxial thin films: Behavior between a two-dimensional quantum well and the
bulk. Phys. Rev. B, 52(4):2640, 1995.

[15] L. Schultheis and K. Ploog. Quantization of excitonic polaritons in thin GaAs layers.
Phys. Rev. B, 29(12):7058, 1984.

[16] N. Tomassini, A. D’Andrea, R. Del Sole, H. Tuffigo-Ulmer, and R. T. Cox. Center-of-mass
quantization of excitons in CdTe/Cd1−xZnxTe quantum wells. Phys. Rev. B, 51(8):5005,
1995.

[17] D. Greco, R. Cingolani, A. D’Andrea, N. Tomassini, L. Vanzetti, and A. Franciosi. Center
of mass quantization of excitons in Zn1−xCdxSe/ZnSe quantum-wells. Phys. Rev. B,
54(23):16998, 1996.

[18] M. L. Cohen and J. R. Chelikowski. Electronic Structure and Optical Properties of Semi-

conductors, volume 75 of Springer Series in Solid-State Sciences. Springer, 2nd edition,
1989.

[19] W. Schäfer and M. Wegener. Semiconductor Optics and Transport Phenomena. Springer
Berlin, 2002.

[20] C. Sieh, T. Meier, F. Jahnke, A. Knorr, S. W. Koch, P. Brick, M. Hübner, C. Ell,
J. Prineas, G. Khitrova, and H. M. Gibbs. Coulomb memory signatures in the excitonic
optical Stark effect. Phys. Rev. Lett., 82(15):3112, 1999.

[21] N. Baer, P. Gartner, and F. Jahnke. Coulomb effects in semiconductor quantum dots.
Eur. Phys. J. B, 42:231, 2004.

[22] H. Dierks and G. Czycholl. Tight-binding calculations of the subband structures of
zincblende-semiconductor (001) quantum wells. Z. Phys. B, 99(2):207, 1996.

[23] H. Dierks and G. Czycholl. Tight-binding calculation of linear excitonic absorption spectra
of single quantum wells. J. Cryst. Growth, 185:877, 1998.

[24] J. M. Luttinger and W. Kohen. Motion of electrons and holes in perturbed periodic fields.
Phys. Rev., 97:869, 1955.

[25] J. M. Luttinger. Quantum theory of cyclotron resonance in semiconductors: General
theory. Phys. Rev., 102:1030, 1956.

[26] F. Schwabl. Quantenmechanik. Springer, Berlin, 5th edition, 1998.

[27] G. Czycholl. Theoretische Festkörperphysik: Von den klassischen Modellen zu modernen

Forschungsthemen. Vieweg, Braunschweig/Wiesbaden, 2000.

[28] T. Meier and S. W. Koch. Excitons versus unbound electron-hole pairs and their influence
on exciton bleaching: A model study. Phys. Rev. B, 59(20):13202, 1999.

[29] M. Buck, L. Wischmeier, S. Schumacher, G. Czycholl, F. Jahnke, T. Voss, I. Rückmann,
and J. Gutowski. Light-polarization and intensity dependence of higher-order nonlinear-
ities in excitonic FWM signals. Eur. Phys. J. B, 42:175, 2004.

150



Bibliography

[30] S. R. Bolton, U. Neukirch, L. J. Sham, D. S. Chemla, and V. M. Axt. Demonstration
of sixth-order Coulomb correlations in a semiconductor single quantum well. Phys. Rev.

Lett., 85(9):2000, 2000.

[31] V. M. Axt, S. R. Bolton, U. Neukirch, L. J. Sham, and D. S. Chemla. Evidence of sixth-
particle Coulomb correlations in six-wave-mixing signals from a semiconductor quantum
well. Phys. Rev. B, 63:115303, 2001.

[32] W. Schäfer, R. Lövenich, N. A. Fromer, and D. S. Chemla. From coherently excited highly
correlated states to incoherent relaxation processes in semiconductors. Phys. Rev. Lett.,
86(2):344, 2001.

[33] R. Lövenich, C. W. Lai, D. Hägele, D. S. Chemla, and W. Schäfer. Semiconductor
polarization dynamics from coherent to incoherent regime: Theory and experiment. Phys.

Rev. B, 66:045306, 2002.

[34] S. I. Pekar. Sov. Phys. JETP, 6:785, 1958.

[35] C. S. Ting, M. J. Frankel, and J. L. Birman. Solid State Commun., 17:1285, 1975.

[36] V. A. Kiselev, B. S. Razbirin, and I. N. Uraltsev. Electrodynamics of bounded spatially
dispersive media: The additional boundary conditions. Phys. Stat. Sol. B, 72:161, 1975.

[37] E. F. Venger and V. N. Piskovoi. Consistency of boundary conditions in crystal optics
with spatial dispersion. Phys. Rev. B, 70:115107, 2004.

[38] E. A. Muljarov and R. Zimmermann. Exciton polariton including continuum states:
Microscopic versus additional boundary conditions. Phys. Rev. B, 66:235319, 2002.

[39] A. D’Andrea and R. Del Sole. Exciton quantization and polariton propagation in semi-
conductor slabs: From semi-infinite crystals to quantum wells. Phys. Rev. B, 41(3):1413,
1990.

[40] M. Combescot, R. Combescot, and B. Roulet. The exciton dead layer revisited. Eur.

Phys. J., 23:139, 2001.

[41] E. Butkov. Mathematical Physics. Addison-Wesley Series in Advanced Physics. Addison-
Wesley Publishing Company, London, 1968.

[42] K. Henneberger. Additional boundary conditions: An historical mistake. Phys. Rev. Lett.,
80:2889, 1998.

[43] S. Schumacher, G. Czycholl, F. Jahnke, I. Kudyk, H. I. Rückmann, J. Gutowski, A. Gust,
G. Alexe, and D. Hommel. Polariton propagation in shallow-confinement heterostructures:
Microscopic theory and experiment showing the breakdown of the dead-layer concept.
Phys. Rev. B, 70(23):235340, 2004.

[44] S. Lankes, T. Reisinger, B. Hahn, C. Meier, M. Meier, and W. Gebhardt. Composi-
tion dependent determination of band offsets in ZnCdSe/ZnSe and ZnSe/ZnSSe SQW by
optical means. J. Cryst. Growth, 159:480, 1996.

[45] N. Baer. Optische Eigenschaften von Halbleiter-Quantenpunkten. Diplomarbeit, Univer-
sität Bremen, Institut für Theoretische Physik, 2003.

151



Bibliography

[46] J. E. Bernard and A. Zunger. Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobi-
nary alloys. Phys. Rev. B, 36:3199, 1987.

[47] K. Shahzad, D. J. Olego, and C. G. Van de Walle. Optical characterization and band
offsets in ZnSe-ZnSxSe1−x strained-layer superlattices. Phys. Rev. B, 38:1417, 1988.

[48] Su-Huai Wei and A. Zunger. Calculated natural band offsets of all II-VI and III-V
semiconductors: Chemical trends and the role of cation d orbitals. Appl. Phys. Lett.,
72(16):2011, 1998.

[49] G. F. Schötz, W. Sedlmeier, M. Lindner, and W. Gebhardt. The pressure dependence of
the intraimpurity absorption and the charge transfer process of ZnS:Ni and ZnSe:Ni. J.

Phys. Cond. Mat., 7:795, 1995.

[50] C. G. Van de Walle and J. Neugebauer. Universal alignment of hydrogen levels in semi-
conductors, insulators and solutions. Nature, 423:626, 2003.

[51] H. W. Hölscher, A. Nöthe, and C. Uihlein. Investigation of band masses and g values of
ZnSe by two-photon magnetoabsorption. Phys. Rev. B, 31:2379, 1985.

[52] S. Lankes, B. Hahn, C. Meier, F. Hierl, M Kastner, A. Rosenauer, and W. Gebhardt.
Photoreflectance measurements on ZnSe/ZnS0.25Se0.75 SQW. Phys. Stat. Sol. a, 152:123,
1995.

[53] B. Rockwell, H. R. Chandrasekhar, M. Chandrasekhar, A. K. Ramdas, M. Kobayashi,
and R. L. Gunshor. Pressure tuning of strains in semiconductor heterostructures: (ZnSe
epilayer)/(GaAs epilayer). Phys. Rev. B, 44(20):11307, 1991.

[54] I. Galbraith. Simple formula for exciton binding energy in quantum wells with zero band
offsets. Phys. Rev. B, 45(12):6950, 1992.

[55] V. M. Axt, A. Stahl, E. J. Mayer, P. Haring Bolivar, S. Nüsse, K. Ploog, and K. Köh-
ler. Four-wave-mixing theory beyond the Semiconductor Bloch Equations. Z. Phys. B,
188:447, 1995.

[56] N. H. Kwong, R. Takayama, I. Rumyantsev, M. Kuwata-Gonokami, and R. Binder. Third-
order exciton-correlation and nonlinear cavity-polariton effects in semiconductor micro-
cavities. Phys. Rev. B, 64:045316, 2001.

[57] N. H. Kwong, R. Takayama, I. Rumyantsev, M. Kuwata-Gonokami, and R. Binder. Ev-
idence of nonperturbative continuum correlations in two-dimensional exciton systems in
semiconductor microcavities. Phys. Rev. Lett., 87:027402, 2001.

[58] M. E. Donovan, A. Schülzgen, J. Lee, P.-A. Blanche, N. Peyghambarian, G. Khitrova,
H. M. Gibbs, I. Rumyantsev, N. H. Kwong, R. Takayama, Z. S. Yang, and R. Binder.
Evidence for intervalence band coherences in semiconductor quantum wells via coherently
coupled optical stark shifts. Phys. Rev. Lett., 87:237402, 2001.

[59] J. Förstner, A. Knorr, and S. W. Koch. Nonlinear pulse propagation in semiconductors:
Hole burning within a homogeneous line. Phys. Rev. Lett., 86(3):476, 2001.

[60] F. Jahnke. A many-body theory for laser emission and excitonic effects in semiconductor
microcavities. Habilitationsschrift, Philipps-Universität Marburg, Fachbereich Physik,
1996.

152



Bibliography

[61] G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch. Nonlinear optics of
normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys., 71(5):1591, 1999.

[62] A. L. Ivanov and H. Haug. Self-consistent theory of the biexciton optical nonlinearity.
Phys. Rev. B, 48:1490, 1993.

[63] N. C. Nielsen, S. Linden, J. Kuhl, J. Förstner, A. Knorr, S. W. Koch, and H. Giessen.
Coherent nonlinear pulse propagation on a free-exciton resonance in a semiconductor.
Phys. Rev. B, 64:245202, 2001.

[64] J. S. Nägerl, B. Stabenau, G. Böhne, S. Dreher, R. G. Ulbrich, G. Manzke, and K. Hen-
neberger. Polariton pulse propagation through GaAs: Excitation-dependent phase shifts.
Phys. Rev. B, 63:235202, 2001.

[65] U. Neukirch and K. Wundke. Propagation of confined excitonic polaritons at high densi-
ties. Phys. Rev. B, 55(23):15408, 1997.

[66] H. G. Breunig, T. Voss, I. Rückmann, J. Gutowski, V. M. Axt, and T. Kuhn. Influence
of higher Coulomb correlations on coherent-control signals from a ZnSe quantum well. J.

Opt. Soc. Am. B, 20:1769, 2003.

[67] R. Takayama, N. H. Kwong, I. Rumyantsev, M. Kuwata-Gonokami, and R. Binder. T-
matrix analysis of biexcitonic correlations in the nonlinear optical response of semicon-
ductor quantum wells. Eur. Phys. J. B, 25:445, 2002.

[68] I. Rumyantsev, N. H. Kwong, R. Takayama, and R. Binder. Effects of intervalence band
coherences on the coherently coupled heavy-hole-light-hole stark shift in semiconductor
quantum wells. Phys. Rev. B, 65:245325, 2002.

[69] D. A. Kleinman. Binding energy of biexcitons and bound excitons in quantum wells.
Phys. Rev. B, 28(2):871, 1983.

[70] J. R. Haynes. Experimental proof of the excistence of a new electronic complex in silicon.
Phys. Rev. Lett., 4(7):361, 1960.

[71] R. C. Miller, D. A. Kleinman, A. C. Gossard, and O. Munteanu. Biexcitons in GaAs
quantum wells. Phys. Rev. B, 25(10):6545, 1982.

[72] J. Zhang, T. Pang, and C. Chen. Biexcitons in quantum wells: A quantum Monte Carlo
study. Phys. Lett. A, 206:101, 1995.

[73] I.-K. Oh and J. Singh. Geometric approach to determine the binding energy of quasi-
two-dimensional biexcitons. Phys. Rev. B, 60(4):2528, 1999.

[74] D. Birkedal, J. Singh, V. G. Lyssenko, J. Erland, and J. M. Hvam. Binding of quasi-two-
dimensional biexcitons. Phys. Rev. Lett., 76(4):672, 1996.

[75] W. Schäfer, D. S. Kim, J. Shah, T. C. Damen, J. E. Cunningham, K. W. Goossen, L. N.
Pfeiffer, and K. Köhler. Femtosecond coherent fields induced by many-particle correlations
in transient four-wave mixing. Phys. Rev. B, 53(24):16429, 1996.

[76] M. Buck. Theoretische Beschreibung kohärenter optischer Nichtlinearitäten in Halbleiter-
Quantenfilmen. Dissertation, Universität Bremen, Institut für Theoretische Physik, 2004.

153



Bibliography

[77] H. G. Breunig. Einfluss optischer Nichtlinearitäten auf die kohärente Kontrolle von exzi-
tonischen Anregungen in ZnSe-Quantentrögen. Dissertation, Universität Bremen, Institut
für Festkörperphysik, 2003.

[78] S. Schumacher. Zeitabhängige Schrödingergleichung für wechselwirkende Elektronensys-
teme. Diplomarbeit, Universität Bremen, Institut für Theoretische Physik, 2001.

[79] A. Askar and A. S. Cakmak. Explicit integration method for the time-dependent
Schrödinger equation for collision problems. J. Chem. Phys., 68:2794, 1978.

[80] C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Ham-
merich, G. Jolichard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff. A
comparison of different propagation schemes for the time dependent Schrödinger equation.
J. Comput. Phys., 94:59, 1991.

[81] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in

C: The art of scientific computing. Cambridge University Press, New York, 2nd edition,
1988.

[82] P. S. Pacheco. Parallel programming with MPI. Morgan Kaufmann Publishers, San
Francisco, 1997.

[83] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2, Advanced features of the Message-

Passing Interface. Scientific and engineering computation series. The MIT Press, Cam-
bridge, Massachusetts, 1999.

[84] H. C. Schneider. Zur Theorie der Lichtausbreitung und Spin-Optik in Halbleitern. Dis-
sertation, Universität Marburg, Fachbereich Physik, 1999.

[85] F. M. Gomes and D. C. Sorensen. Arpack++, An object oriented version of ARPACK
eigenvalue package. User guide, 1998.

[86] W. F. Ames. Numerical Methods for Partial Differential Equations. Computer Science
and Scientific Computing. Academic Press Inc., San Diego, 3rd edition, 1992.

[87] I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Mühlig. Taschenbuch der Math-

ematik. Harri Deutsch, Frankfurt am Main, 1991.

154



Publications connected to this work:

• “Microscopic Description of Exciton-Polaritons in Thin Semiconductor Layers”
S. Schumacher, G. Czycholl, and F. Jahnke, Phys. Stat. Sol. B, 234:172, 2002

• “Light-polarization and intensity dependence of higher-order nonlinearities in
excitonic FWM signals”
M. Buck, L. Wischmeier, S. Schumacher, G. Czycholl, F. Jahnke, T. Voss,
I. Rückmann, and J. Gutowski, Eur. Phys. J. B, 42:175, 2004

• “Polariton propagation in shallow-confinement heterostructures: Microscopic
theory and experiment showing the breakdown of the dead-layer concept”
S. Schumacher, G. Czycholl, F. Jahnke, I. Kudyk, H. I. Rückmann, J. Gutowski,
A. Gust, G. Alexe, and D. Hommel, Phys. Rev. B, 70:235340, 2004

• “Coherent Propagation of Polaritons in Semiconductor Heterostructures: Nonlin-
ear Pulse Transmission in Theory and Experiment”
S. Schumacher, G. Czycholl, F. Jahnke, I. Kudyk, L. Wischmeier, I. Rückmann,
T. Voss, J. Gutowski, A. Gust, and D. Hommel, submitted

Conference contributions with publication:

• 26th International Conference on the Physics of Semiconductors (ICPS), Edin-
burgh (UK), 2002
“Microscopic description of exciton-polaritons in thin semiconductor layers”,
S. Schumacher, G. Czycholl, and F. Jahnke

• 14th International Conference on Ultrafast Phenomena, Niigata (Japan), 2004
“Evidence of higher-order nonlinearities on excitonic FWM signals in microscopic
theory and experiment”,
L. Wischmeier, I. Rückmann, J. Gutowski, M. Buck, S. Schumacher, G. Czycholl,
and F. Jahnke, in print

• 27th International Conference on the Physics of Semiconductors (ICPS), Flagstaff,
Arizona (USA), 2004
“Microscopic Theory for Nonlinear Polariton Propagation”, S. Schumacher,
G. Czycholl, and F. Jahnke, in print

• Conference on lasers and electro-optics / Quantum electronic & laser-science con-
ference (CLEO/QELS), Baltimore, Maryland (USA), 2005
“Polariton Propagation in Shallow-Confinement Heterostructures”,
S. Schumacher, G. Czycholl, F. Jahnke, I. Kudyk, H. I. Rückmann, J. Gutowski,
A. Gust, G. Alexe, and D. Hommel, accepted



Conference contributions:

• Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Regensburg (Ger-
many), 2002
“Mikroskopische Beschreibung von Exziton-Polaritonen in dünnen Halbleiter-
Schichten”, S. Schumacher, G. Czycholl, and F. Jahnke

• Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Dresden (Germany),
2003
“Polariton-Propagation in dünnen Halbleiterschichten”, S. Schumacher, G. Czy-
choll, and F. Jahnke

• Marchmeeting of the American Physical Society, Austin, Texas (USA), 2003,
“Polariton-Propagation in Thin Semiconductor Layers”, S. Schumacher,
G. Czycholl, and F. Jahnke

• Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Regensburg (Ger-
many), 2004
“Nichtlineare Polariton-Propagation in dünnen Halbleiterschichten”, S. Schu-
macher, G. Czycholl, and F. Jahnke

• Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Berlin (Germany),
2005
“Polariton Propagation in Semiconductor Heterostructures”, S. Schumacher,
G. Czycholl, F. Jahnke, I. Kudyk, I. Rückmann, and J. Gutowski

• Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Berlin (Germany),
2005
“Nonlinear transmission and pump-and-probe experiments on ZnSe/ZnSSe het-
erostructures”, I. Kudyk, I. Rückmann, J. Gutowski, S. Schumacher, G. Czycholl,
and F. Jahnke



Danksagung

In erster Linie danke ich meinem Doktorvater, Herrn Prof. Dr. Gerd Czycholl, für
die gute Betreuung und die Unterstützung bei meiner interessanten Arbeit.

Weiter danke ich Herrn Prof. Dr. Frank Jahnke für die Anfertigung des zweiten
Gutachtens, sowie für die produktive und angenehme Zusammenarbeit während der
letzten Jahre.

Für viele fruchtbare Diskussionen und die erfolgreiche gemeinsame Arbeit möchte
ich mich bei Michael Buck bedanken.

Stefan Schulz danke ich für die angenehme Zeit und freundschaftliche Zusam-
menarbeit in unserem gemeinsamen Büro und für das ein oder andere gesellige
Zusammensein nach getaner Arbeit. Außerdem danke ich ihm für das gründliche,
und wahrscheinlich sehr mühsame Korrekturlesen der ersten Version meines
Manuskriptes.

Norman Baer möchte ich besonders für die schönen gemeinsamen Tagungs- und
Urlaubsreisen danken, aber natürlich auch für die freundschaftliche Zusammenar-
beit, und dafür, dass er sich die Arbeit gemacht hat Teile meines Manuskriptes zu
lesen und kritisch zu kommentieren.

Allen anderen Mitgliedern der Arbeitsgruppen Theoretische Festkörperphysik und
Theoretische Halbleiterphysik danke ich für die gute Arbeitsatmosphäre und die
ständige Diskussions- und Hilfsbereitschaft im dritten Stock Ost des NW1.

Bei den Mitarbeitern der Arbeitsgruppe von Herrn Prof. Dr. Jürgen Gutowski be-
danke ich mich für die Unterstützung. Der Vergleich mit experimentellen Ergebnis-
sen hat diese Arbeit erst richtig abgerundet. Besonders danke ich hier Iryna Kudyk,
die für die Messungen immer wieder im Labor stehen musste. Tobias Voss danke
ich für die ein oder andere fruchtbare Diskussion.

Arne Gust, aus der Arbeitsgruppe von Herrn Prof. Dr. Detlef Hommel, danke ich
dafür, dass er mit viel Engagement und Sorgfalt die Proben für die Experimente
hergestellt hat, sowie für die gemeinsame Studienzeit. Gabriela Alexe danke ich für
ihre Mühe bei der Charakterisierung der Proben.

Meiner Freundin Katrin danke ich für ihre Geduld in der Schlussphase dieser Arbeit,
aber besonders für die vielen schönen gemeinsamen Jahre.


